cho điểm O nằm trong tam giác ABC đều cạnh
a, Kẻ OA' vuông với BC, OB' vuông với AC, OC' vuông AB
C/m AC' + AB' + CB' không đổi khi điểm O thay đổi vị trí trong tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi a là cạnh của tam giác đều ABC, \(S\)là diện tích của tam giác đều ABC , \(x\)là diện tích tam giác ADB , \(y\)là diện tích tam giác ADC , \(z\)là diện tích tam giác BDC (x,y,z > 0)
Ta có : \(x+y+z=S\)
Mặt khác : \(x=\frac{a.DM}{2}\Rightarrow DM=\frac{2x}{a}\) ; tương tự : \(DN=\frac{2y}{a}\); \(DP=\frac{2z}{a}\)
\(\Rightarrow DM+DN+DP=\frac{2x}{a}+\frac{2y}{a}+\frac{2z}{a}=\frac{2}{a}\left(x+y+z\right)=\frac{2S}{a}\)(không đổi)
Vậy khi D di chuyển thì DM + DN + DP không đổi (đpcm)