câu 1 : tính giá trị bt : \(P=\left(1-\dfrac{1}{1+2}\right)\cdot\left(1-\dfrac{1}{1+2+3}\right)...\left(1-\dfrac{1}{1+2+...+2018}\right)\)
b) cho 2 số thực a, b lần lượt thoả mãn các hệ thức \(a^3-3a^2+5b+11=0\) chứng minh a+b=2
câu 2 : cho bt :
\(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-1+a}\right)\cdot\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right)\cdot\sqrt{a^2-2a+1}\)
với 0<a<1
a) rút gọn Q
b) so sánh Q và \(Q^3\)
câu 3 : cho các số thực x,y thoả mãn \(\left(x+\sqrt{2018+x^2}\right)\cdot\left(y+\sqrt{2018+y^2}\right)=2018\)
tính gtbt \(Q=x^{2019}+y^{2019}+2018\cdot\left(x+y\right)+2020\)
bài 2: ta có : \(Q=\left(\dfrac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\dfrac{1-a}{\sqrt{1-a^2}-\left(1-a\right)}\right)\left(\sqrt{\dfrac{1}{a^2}-1}-\dfrac{1}{a}\right).\sqrt{a^2-2a+1}\)
\(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}\sqrt{1-a}+1-a}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\dfrac{\sqrt{1-a^2}}{a}-\dfrac{1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1+a}+\sqrt{1-a}}{\sqrt{1+a}-\sqrt{1-a}}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{\sqrt{1-a^2}+1}{a}\right)\left(\dfrac{\sqrt{1-a^2}-1}{a}\right)\left(1-a\right)\) \(\Leftrightarrow Q=\left(\dfrac{1-a^2-1}{a^2}\right)\left(1-a\right)=a-1\)b) ta có : \(Q^3-Q=\left(a-1\right)\left(\left(a-1\right)^2-1\right)=a\left(a-1\right)\left(a-2\right)\)
mà ta có : \(\left\{{}\begin{matrix}a>0\\a-1< 0\\a-2< 0\end{matrix}\right.\Rightarrow a\left(a-1\right)\left(a-2\right)>0\) \(\Rightarrow Q^3-Q>0\Leftrightarrow Q^3>Q\)
vậy \(Q^3>Q\)
Nguyễn Huy TúAkai HarumaLightning FarronNguyễn Thanh Hằngsoyeon_Tiểubàng giảiMashiro ShiinaVõ Đông Anh Tuấn
Hoàng Lê Bảo NgọcTrần Việt Linh
cứu tôi với