Tìm x, y biết
a) x =y/2=z/3 và 4x-3y+2z=32
Help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`#3107.101117`
a)
`x \div y \div z = 4 \div 3 \div 9`
`=> x/4 = y/3 = z/9`
`=> x/4 = (3y)/9 = (4z)/36`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/4 = (3y)/9 = (2z)/8 = (x - 3y + 4z)/(4 - 9 + 36) = 62/31 = 2`
`=> x/4 = y/3 = z/9 = 2`
`=> x = 4*2 = 8` $\\$ `y = 3*2 = 6` $\\$ `z = 9*2 = 18`
Vậy, `x = 8; y = 6; z = 18`
c)
\(x \div y \div z = 1 \div 2 \div 3\)
`=> x/1 = y/2 = z/3`
`=> (4x)/4 = (3y)/6 = (2z)/6`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(4x)/4 = (3y)/6 = (2z)/6 = (4x - 3y + 2z)/(4 - 6 + 6) = 36/4 = 9`
`=> x/1 = y/2 = z/3 = 9`
`=> x = 1*9=9` $\\$ `y = 2*9 = 18` $\\$ `z = 3*9 = 27`
Vậy, `x = 9; y = 18; z = 27`
Các câu còn lại cậu làm tương tự nhé.
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
A)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/1 = y/2 = z/3 = 4x -3y +2z /4.1 -3.2 +2.3 =36/4 =9
x/1=9 =>x=9.1=9
y/2=9=>y=9.2=18
z/3=9=>z=9.3=27
B)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=3x+y-2z/3.3+8-2.5=14/7=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
C)Dựa vào tính chất của dãy tỉ số bằng nhau:
x/3=y/8=z/5=2y+3y-z/2.3+3.8-5=50/25=2
x/3=2=>x=2.3=6
y/8=2=>y=2.8=16
z/5=2=>z=2.5=10
Theo tinh chat ti so bang nhau , ta co
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x.4}{1.4}=\frac{y.3}{2.3}=\frac{4.x}{4}=\frac{3.y}{6}=\frac{2.z}{6}=\frac{4.x-3.y+2.z}{4-6+6}=\frac{36}{4}=9\)
Nen : 1/x = 9 => x = 9
2/y = 9 => y = 18
3/z = 9 => z = 27
Ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{4x}{4}-\frac{3y}{6}+\frac{2z}{6}=\frac{4x-3y+2z}{4-6+6}=\frac{36}{4}=9\)
Do đó : \(\hept{\begin{cases}\frac{x}{1}=9\\\frac{y}{2}=9\\\frac{z}{3}=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=9\\y=18\\z=27\end{cases}}\)
Vậy \(x;y;z=9;18;27\)
Lời giải:
$2x=z; 3y=2z\Rightarrow \frac{x}{1}=\frac{z}{2}; \frac{z}{3}=\frac{y}{2}$
$\Rightarrow \frac{x}{3}=\frac{z}{6}=\frac{y}{4}$
Đặt $\frac{x}{3}=\frac{z}{6}=\frac{y}{4}=k$
$\Rightarrow x=3k; z=6k; y=4k$
Khi đó:
$4x-3y+2z=36$
$\Rightarrow 4.3k-3.4k+2.6k=36$
$\Rightarrow 12k=36$
$\Rightarrow k=3$
$\Rightarrow x=3k=9; y=4k=12; z=6k=18$
theo đề bài ta có: \(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}\) và 4x-3y+2z=32
=>\(\dfrac{x}{1}=\dfrac{y}{2}=\dfrac{z}{3}=\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}\)
Áp dụng dãy tỉ số bằng nhau ta đc:
\(\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{32}{4}=8\)
=>4x=8.4=32=>x=8
3y=8.6=48=>y=16
2z=8.6=48=>z=24
vậy x=8
y=16
z=24
\(x=\dfrac{y}{2}=\dfrac{z}{3}\&4x-3y+2z=32\)
Từ \(x=\dfrac{y}{2}=\dfrac{z}{3}\Rightarrow\dfrac{4x}{4}=\dfrac{3y}{2.3}=\dfrac{2z}{2.3}\Rightarrow\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\dfrac{4x}{4}=\dfrac{3y}{6}=\dfrac{2z}{6}=\dfrac{4x-3y+2z}{4-6+6}=\dfrac{32}{4}=8\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4x}{4}=8\\\dfrac{3y}{6}=8\\\dfrac{2z}{6}=8\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\\dfrac{y}{2}=8\\\dfrac{z}{3}=8\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=16\\z=24\end{matrix}\right.\)