cho tam giác ABC có góc B> góc C . Kẻ AH vuông góc vơi BC tại H và đường phân giác AD . Chứng minh rằng \(\widehat{HAD=}\frac{\widehat{B}-\widehat{C}}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
em gửi bài qua fb thầy HD cho, tìm fb của thầy bằng sđt: 0975705122, ở đây thầy không vẽ hình được
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
Giải thích các bước giải:
a, ΔBAD có BA = BD
⇒ ΔBAD cân ở B
⇒ (đpcm)
b, Ta có:
ΔAHD vuông ở H ⇒
ΔABC vuông ở A ⇒
mà
⇒
⇒ AD là tia phân giác của (đpcm)
c, Xét 2 tam giác vuông ΔHAD và ΔKAD có:
AH chung;
⇒ ΔHAD = ΔKAD (cạnh huyền - góc nhọn)
⇒ AH = AK (đpcm)
d, AB + AC = BD + AK + KC = BD + AH + KC < BD + AH + DC = BC + AH
Vậy AB + AC < BC + AH
a)\(\widehat{C}=\widehat{BAH}=90^O-\widehat{CAH}\)
\(\widehat{B}=\widehat{CAH}=90^O-\widehat{BAH}\)
b)Ta có:
\(\widehat{ADC}=\widehat{B}+\widehat{BAD}=\widehat{B}+\frac{\widehat{BAH}}{2}=\widehat{B}+\widehat{\frac{C}{2}}\)
Lại có:
\(\widehat{DAC}=180^O-\widehat{C}-\widehat{ADC}=180^O-\widehat{C}-\left(\widehat{B}+\widehat{\frac{C}{2}}\right)=\left(90^O-\widehat{B}\right)-\frac{\widehat{C}}{2}+\left(90^O-\widehat{C}\right)\)
\(=\widehat{C}-\widehat{\frac{C}{2}}+\widehat{B}=\widehat{B}+\frac{\widehat{C}}{2}\)
Suy ra:\(\widehat{ADC}=\widehat{DAC}\)
\(\Rightarrow\Delta ADC\)cân tại C
c)\(DK\perp BC;AH\perp BC\Rightarrow DK//AH\)
\(\Rightarrow\widehat{KDA}=\widehat{DAH}\)(hai góc so le trong)
Mà \(\widehat{BAD}=\widehat{DAH}\)
\(\Rightarrow\widehat{BAD}=\widehat{KDA}\)
\(\Rightarrow\)\(\Delta KAD\)cân tại K
d)Xét \(\Delta CDK-\Delta CAK\)
\(\hept{\begin{cases}CD=CA\\KD=KA\\CA.chung\end{cases}}\)
\(\Rightarrow\Delta CDK=\Delta CAK\left(c.c.c\right)\)
\(\Rightarrowđpcm\)
e)Xét\(\Delta AID-\Delta AHD\)
\(\hept{\begin{cases}AI=AH\\AD.chung\\\widehat{DAI}=\widehat{DAH}\end{cases}}\)
\(\Rightarrow\widehat{AID}=\widehat{AHD}=90^O\)
\(\Rightarrow DI\perp AB.Mà.AC\perp AB\)
\(\Rightarrow DI//AC\)
a )
Xét : \(\Delta ABHva\Delta ADH,co:\)
\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)
BH = HD ( gt )
AH là cạnh chung
Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)
b )
Ta có : \(\Delta ABD\) là tam giác đều ( cmt )
= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o )
Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )
Hay : \(\widehat{EAD}=30^o\left(E\in AC\right)\)
Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều )
Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)
Ta có : \(AH\perp BC\) và \(ED\perp BC\)
= > \(AH//ED\) ( vì cùng vuông góc với BC )
=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED )
=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) )
c ) mình không biết chứng minh AH = HF = FC nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :
Ta có : \(\Delta ABC\) vuông tại A và AH là đường cao ( gt )
= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) ( hệ thức lượng trong tam giác vuông )
Hình mình vẽ hơi xấu , thông cảm nha
HỌC TỐT !!!
a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)
\(\rightarrow\) tam giác ABD cân tại A
Mà \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều
b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ
\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ
Tương tự có \(\widehat{DAE}\) = 30độ
\(\Rightarrow\) Tam giác ADE cân tại E
c1) Xét tam giác AHC và tam giác CFA
\(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ
AC chung
\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)
\(\rightarrow\) AH = FC
Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ
\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ
____Phần còn lại cm tam giác HAF cân là ra
Mk bận chút việc nên ms làm đến đây thui nka ~