1, Hãy tích giá trị của biểu thức :
A = ( 1 - 1/2 ) . ( 1 -1/3 ) . ( 1 - 1/4 ) .... ( 1 và 1/2017 ) . ( 1 và 2018 )
B = 1/ 1.2 + 1 / 2.3 + ... + 1/ 49.50
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= (1 - 1/2).(1 - 1/3).(1 - 1/4) ... (1 - 1/2017)
=1/2 .2/3.3/4.......2016/1017
=1.2.3.4....2016/2.3.4.5...2017
=1.(2.3.4..2016)/(2.3.4..2016).2017
=1/2017( chia cả tử và mẫu cho 2.3.4.2016)
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right).....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
P/S: chúc bạn học tốt
\(A=1+3^1+3^2+...+3^{2017}\)
\(3A=3+3^2+3^3+...+3^{2018}\)
\(3A-A=\left(3+3^2+3^3+...+3^{2018}\right)-\left(1+3^1+3^2+...+3^{2017}\right)\)
\(2A=3^{2018}-1\)
\(A=\frac{3^{2018}-1}{2}\)
\(\Rightarrow\)\(B-A=\frac{3^{2018}}{2}-\frac{3^{2018}-1}{2}=\frac{3^{2018}-3^{2018}+1}{2}=\frac{1}{2}\)
Vậy \(B-A=\frac{1}{2}\)
Chúc bạn học tốt ~
ta có: A = 1 + 31 + 32 + ...+ 32017
=> 3A = 31 + 32 + 33 + ....+ 32018
=> 3A - A = 32018 - 1
\(\Rightarrow A=\frac{3^{2018}-1}{2}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3^{2018-1}}{2}}{\frac{3^{2018}}{2}}=\frac{\frac{3^{2018}}{2}}{\frac{3^{2018}}{2}}-\frac{1}{\frac{3^{2018}}{2}}=1-\frac{1}{\frac{3^{2018}}{2}}\)
\(A=\frac{2018}{1}+\frac{2017}{2}+\frac{2016}{3}+...+\frac{1}{2018}\)
\(A=1+\left(1+\frac{2017}{2}\right)+\left(1+\frac{2016}{3}\right)+...+\left(1+\frac{1}{2018}\right)\)
\(A=\frac{2019}{2019}+\frac{2019}{2}+\frac{2019}{3}+...+\frac{2019}{2018}\)
\(A=2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)\)
Ta có: \(\frac{A}{B}=\frac{2019\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2018}+\frac{1}{2019}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}}=2019\)
P=(1/2-1).(1/3-1).(1/4-1)......(1/2017-1). (1/2018-1)
Ta có:
Số số hạng:(2018-2):1+1=2017( số)
Do 2017 là số lẻ nên,ta có:
P=(-1/2).(-2/3).(-3/4).....(-2015/2016). (-2016/2017).(-2017/2018)
P=-1/2018
Tinh gia chi bieu thuc 2018 : 1/2 + 2018 : 1/3 + 2018 : 1/4 + 2018
\(A=\frac{4}{1.2}+\frac{4}{2.3}+\frac{4}{3.4}+...+\frac{4}{2019.2020}\)
\(\frac{1}{4}A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2019.2020}\)
\(\frac{1}{4}A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2019}-\frac{1}{2020}\)
\(\frac{1}{4}A=1-\frac{1}{2020}=\frac{2019}{2020}\)
\(\Rightarrow A=\frac{2019}{2020}:\frac{1}{4}=\frac{2019}{505}\)
Vậy \(A=\frac{2019}{505}.\)
\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(\Rightarrow2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(2B=\frac{1}{1.2}-\frac{1}{99.100}=\frac{4949}{9900}\)
\(\Rightarrow B=\frac{4949}{9900}:2=\frac{4949}{19800}\)
Vậy \(B=\frac{4949}{19800}.\)
\(A=\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+...+\frac{4}{2019\cdot2020}\)
\(A=4\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2018\cdot2019}\right)\)
\(A=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2018}-\frac{1}{2019}\right)\)
\(A=4\left(1-\frac{1}{2019}\right)=4\cdot\frac{2018}{2019}\)
Đến đây tự tính
\(B=\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{98\cdot99\cdot100}\)
\(B=\frac{1}{2}\left(\frac{2}{1\cdot2\cdot3}+\frac{2}{2\cdot3\cdot4}+\frac{2}{3\cdot4\cdot5}+...+\frac{2}{98\cdot99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{98\cdot99}-\frac{1}{99\cdot100}\right)\)
\(B=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{99\cdot100}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)\)
Số hơi bị dữ nên tính nốt nhé
\(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2017}\right)\left(1-\frac{1}{2018}\right)\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.....\frac{2016}{2017}.\frac{2017}{2018}\)
\(=\frac{1}{2018}\)
\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)