a) Tìm số tự nhiên n (203449 <n< 47238) và A để A= 4789655 - 27n là lập phương của một số tự nhiên
b) Cho \(x^{1000}+y^{1000}=6,912;x^{2000}+y^{2000}=33,76244.\)Tính \(Q=x^{3000}+y^{3000}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. tìm a là số tự nhiên để 17a+8 là số chính phương
Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)
\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)
\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)
Nguyên Trinh Quang
Để chia hết thì
n là ước của 30 và
chia hết cho 6
Vậy
n = 1, 3 ,10 , 30
ĐKXĐ: \(n\in N\)
Để A là số tự nhiên thì \(\left\{{}\begin{matrix}n+7⋮n+2\\\dfrac{n+7}{n+2}>=0\end{matrix}\right.\)
=>\(n+5+2⋮n+2\)
=>\(n+2\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{-1;-3;3;-7\right\}\)
mà n là số tự nhiên
nên n=3
Để A là số tự nhiên thì n+7⋮n+2
=> (n+2)+5⋮n+2. Vì n+2⋮n+2 nên 5⋮n+2
=> n + 2 ∈ Ư(5)∈{-5;-1;1;5} => n∈{-7;-3;-1;3}
Mà n phải là số tự nhiên nên n = 3
a: a^n=1
=>a^n=1^n
=>a=1
b: x^50=x
=>x^50-x=0
=>x(x^49-1)=0
=>x=0 hoặc x^49-1=0
=>x=0 hoặc x^49=1
=>x=0 hoặc x=1
Vì n+19/n+6 là 1 số tự nhiên
=> n+19 chia hết cho n+6 và được kết quả là 1 số tự nhiên
Ta có: n+19 chia hết cho n+6
=> (n+6)+13 chia hết cho n+6
Vì n+6 chia hết cho n+6 => 13 chia hết cho n+6
=> n+6 thuộc Ư(13)={1;13;-1;-13}
Mà vì n là số tự nhiên => n+6=13
=> n=7
A= (n+19)/(n+6)
=> A= (n+6+13)/(n+6)
=> A=1 + 13//(n+6)
để A là số tự nhiên thì (n+6) thuộc ước 13, mà n là số tự nhiên
=> n+6 thuộc tập hợp 1,13
=> n thuộc tập hợp 7
Vậy......