Chứng minh với mọi số nguyên dương, ta luôn có:
1 + 3 + 5 + … + (2n – 1) = n² (1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số số hạng:
\(\left(2n-1-1\right)\div2+1=\frac{2n-2}{2}+1=\frac{2\times\left(n-1\right)}{2}+1=n-1+1=n\) (số hạng)
Tổng trên là:
\(\frac{\left(2n-1+1\right)\times n}{2}=\frac{2n\times n}{2}=n^2\)
Giải
Chú ý vế trái (VT) có n số hạng, n = 1: VT = 1, n = 2: VT = 1 + 3…
Thật vậy: VT(3) = VT(2) + [2(k + 1) - 1]= VP(2) + [2k + 1]
= k² + 2k + 1 = (k + 1)²
= VP(3) (đpcm)
Theo phương pháp quy nạp, (1) đúng với mọi số nguyên dương n.
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
= (-1).5n \(⋮5\)
(n - 1)(3 - 2n) - n (n + 5)
= 3n - 2n2 - 3 + 2n - n2 - 5n
= -3n2 - 3
= 3(- n2 - 1)\(⋮3\)
Ta có: n(2n – 3) – 2n(n + 1) = 2 n 2 – 3n – 2 n 2 – 2n = - 5n
Vì -5 ⋮ 5 nên -5n ⋮ 5 với mọi n ∈ Z .
n(2n - 3) - 2n(n + 1)
= 2n2 - 3n - 2n2 - 2n
= -5n
Vậy n(2n - 3) - 2n(n + 1) chia hết cho 5 với mọi n
Giải: Chú ý vế trái (VT) có n số hạng, n = 1: VT = 1, n = 2: VT = 1 + 3…
Thật vậy: VT(3) = VT(2) + [2(k + 1) - 1]= VP(2) + [2k + 1]
= k² + 2k + 1 = (k + 1)²
= VP(3) (đpcm)
Theo phương pháp quy nạp, (1) đúng với mọi số nguyên dương n.
Số số hạng của dãy số trên là:
( 2n - 1 - 1 ) : 2 +1
= ( 2n - 2 ) : 2 + 1
= 2( n - 1 ) : 2 + 1
= n - 1 + 1
= n
Tổng của dãy số trên là:
( 2n - 1 + 1 ) . n : 2
= 2n.n : 2
= n.n
= n2