K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2018

A B C H E

Gọi AH \(\perp \) BC = {H}, E là trung điểm của AB

Xét \(\Delta AHB\)vuông tại H có HE là là đường trung tuyến

 => HE = AE = BE = \(1 \over 2\) AB

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=18^2+20^2=724\)

hay \(BC=2\sqrt{181}cm\)

Vậy: \(BC=2\sqrt{181}cm\)

13 tháng 2 2020

e, Trên tia đối của tia DH  lấy điểm F sao cho DF = DH = 1/2 FH

Xét tam giác ADF và BDH có : 

AD = BD ( cmt ) 

ADF = BDH ( 2 góc đối đỉnh )

DF = DH ( cách vẽ )
=> Tam giác ADF = tam giác BDH ( c.g.c )
=> FH = AB ( 2 cạnh tương ứng ) 
Mà DF = DH = 1/2 FH ( cách vẽ )
=> HD = 1/2 AB ( đpcm )

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: Xét ΔABH vuông tại H và ΔCAH vuông tại H có

góc ABH=góc CAH

=>ΔABH đồng dạng với ΔCAH

c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

17 tháng 12 2021

a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔHBD

Suy ra: DA=DH

19 tháng 4 2021

19 tháng 4 2021

a, Áp dụng đinh lí Pytago cho tam giác ABC vuông tại A, AH là đường cao 

AB^2 + AC^2 = BC^2

=> BC^2 = 36 + 64 = 100 => BC = 10 cm 

Vì AD là tia phân giác ^A nên ta có : \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\)

mà DC = BC - BD = 10 - BD 

hay \(\dfrac{6}{8}=\dfrac{BD}{10-BD}\Rightarrow BD=\dfrac{30}{7}\)cm 

=> DC = 10 - BD = 10 - 30/7 = 40/7 cm 

b, Xét tam giác ABC và tam giác AHB ta có : 

^BAC = ^AHB = 900

^B chung 

Vậy tam giác ABC ~ tam giác AHB ( g.g )

 

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: \(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{240}{13}\left(cm\right)\)

12 tháng 2 2022