1) Cho tam giác ABC vuông tại A ( AB > AC ) . Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Trên cạnh AB lấy điểm E sao cho AC = AE
a) Chứng minh rằng : △ ABC = △ ADE
b) Gọi M , N lần lượt là trung điểm của DE và BC. Chứng minh △ ADM = △ ABN và △ AMN vuông cân
c) Qua E kẻ EH ⊥ BC tại H. Chứng minh rằng 3 điểm D ; E ; H thẳng hàng và CE ⊥ BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: AM=ED/2
AN=BC/2
mà ED=BC
nên AM=AN
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Xét ΔAMD và ΔANB có
AM=AN
MD=NB
AD=AB
Do đó: ΔAMD=ΔANB
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
=>ΔABC=ΔADE
b: ΔACE vuông cân tại A
=>góc ACE=45 độ
c: DE=BC=căn 12^2+16^2=20cm
a: Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD
AC=AE
Do đó: ΔABC=ΔADE
b: Ta có: ΔABC=ΔADE
nên BC=DE(1)
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2(2)
Ta có: ΔADE vuông tại A
mà AN là đường trung tuyến
nên AN=DE/2(3)
Từ (1), (2) và (3) suy ra AM=AN
a) Xét ΔABC vuông tại A và ΔADE vuông tại A có
AB=AD(gt)
AC=AE(gt)
Do đó: ΔABC=ΔADE(hai cạnh góc vuông)
Xét tứ giác EDCB có
A là trung điểm của đường chéo DB
A là trung điểm của đường chéo EC
Do đó: EDCB là hình bình hành
Suy ra: ED//BC
hay \(\widehat{ADE}=\widehat{ABC};\widehat{AED}=\widehat{ACB}\)
giup mik nha❤
mỗi phần c thôi cx đc