1/6+1/12+1/20+1/30+.....+1/x.(x+1)=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{x}+\frac{1}{2.x}+\frac{1}{6x}+\frac{1}{12x}+\frac{1}{30x}\)
= \(\frac{1}{x}\left(1+\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{30}\right)\)
= \(\frac{1}{x}\left(1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\right)\)
= \(\frac{1}{x}\left(1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\right)\)
=\(\frac{1}{x}\left(1+1-\frac{1}{6}\right)\)
=\(\frac{1}{x}.\frac{11}{6}\)
=\(\frac{11}{6x}\)
\(x=\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}=\dfrac{5}{6}\)
x-1/2-1/6-1/12=1/30+1/20
x-1/2-1/6-1/12=1/12
x-1/2-1/6=1/12+1/12
x-1/2-1/6=1/6
x-1/2=1/6+1/6
x-1/2=1/3
x=1/3+1/2
x=2/6+3/6
x=5/6
1/2 + 1/6 + 1/12 + 1/20 + 1/30 1/x = 41/42
5/6 + 1/x = 41/42
1/x = 41/42 - 5/6
1/x = 1/7
vậy x = 7
x + 1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 = 1
x + 1/1*2 + 1/2*3 + 1/3*4 + 1/4*5 + 1/5*6 + 1/6*7 = 1
x + 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + 1/5 - 1/6 + 1/6 - 1/7 = 1
x + 1/1 - 1/7 = 1
x + 6/7 = 1
x = 1 - 6/7
x = 1/7
x + 1/2 + 1/6 + 1/20 + 1/30 + 1/42 = 1
x + 65/84 = 1
x = 1 - 65/84
x = 19/84
Lời giải:
$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{x(x+1)}=\frac{3}{8}$
$\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{x(x+1)}=\frac{3}{8}$
$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{6}-\frac{1}{7}+\frac{1}{x(x+1)}=\frac{3}{8}$
$1-\frac{1}{7}+\frac{1}{x(x+1)}=\frac{3}{8}$
$\frac{6}{7}+\frac{1}{x(x+1)}=\frac{3}{8}$
$\frac{1}{x(x+1)}=\frac{3}{8}-\frac{6}{7}=\frac{-27}{56}$
Kết quả này không phù hợp lắm.
Bạn xem lại đề nhé.
ĐK : \(x\ne-2.-3;-4;-5;-6\)
\(\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}+\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^2+11x+30}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\Leftrightarrow\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\Leftrightarrow x^2+8x-20=0\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\Leftrightarrow x=2;x=-10\)( tmđkxđ )
Vậy tập nghiệm phương trình là S = { -10 ; 2 }
ĐKXĐ \(x\notin\left\{-2;-3;...;-6\right\}\)
Phương trình tương đương với:
\(\dfrac{1}{\left(x^2+2x\right)+\left(3x+6\right)}+\dfrac{1}{\left(x^2+3x\right)+\left(4x+12\right)}+\dfrac{1}{\left(x^2+4x\right)+\left(5x+20\right)}+\dfrac{1}{\left(x^2+5x\right)+\left(6x+30\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{\left(x+3\right)-\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}+\dfrac{\left(x+4\right)-\left(x+3\right)}{\left(x+3\right)\left(x+4\right)}+\dfrac{\left(x+5\right)-\left(x+4\right)}{\left(x+4\right)\left(x+5\right)}+\dfrac{\left(x+6\right)-\left(x+5\right)}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\\ \Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
\(\Leftrightarrow\dfrac{4}{\left(x+2\right)\left(x+6\right)}=\dfrac{4}{32}\\ \Rightarrow\left(x+2\right)\left(x+6\right)=32\\\Leftrightarrow x^2+8x-20=0\\ \Leftrightarrow\left(x+10\right)\left(x-2\right)=0\\ \Leftrightarrow\begin{matrix}x=2\\x=-10\end{matrix}\left(t.m\right)\)
Hãy tích cho tui đi
vì câu này dễ mặc dù tui ko biết làm
Yên tâm khi bạn tích cho tui
Tui sẽ ko tích lại bạn đâu
THANKS
\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{x\cdot\left(x+1\right)}=2\)
\(\Leftrightarrow\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...+\frac{1}{x\cdot\left(x+1\right)}=2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{x}-\frac{1}{x+1}=2\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{x+1}=2\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{2}-2\)
\(\Leftrightarrow\frac{1}{x+1}=\frac{-3}{2}\)
\(\Leftrightarrow\frac{-3}{-3x-3}=\frac{-3}{2}\)
\(\Leftrightarrow-3x-3=2\)
\(\Leftrightarrow-3x=2+3\)
\(\Leftrightarrow-3x=5\)
\(\Leftrightarrow x=\frac{-5}{3}\)
Vậy \(x=\frac{-5}{3}\)