K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

2 giây trước (19:05)

Gọi O là điểm nằm trong  ΔABC. Chứng minh:

a. OA+OB+OC>AB+BC+CA/2

b. OA+OB+OC<AB+BC+CA

Vừa nãy viết hơi rối

23 tháng 7 2023

Ta có: OA + OB + OC = OA + OB + OC = (OA + OB) + OC = AB + OC < AB + BC + CA (vì OC < BC) Vậy ta có: OA + OB + OC < AB + BC + CA (1) Ta cũng có: OA + OB + OC = OA + OB + OC = (OA + OC) + OB = AC + OB < AB + BC + CA (vì OB < AB) Vậy ta có: OA + OB + OC < AB + BC + CA (2) Từ (1) và (2), ta có: OA + OB + OC < AB + BC + CA Tương tự, ta có: OA + OB + OC = OA + OB + OC = (OB + OC) + OA = BC + OA > 0A + OB + OC (vì BC > 0A) Vậy ta có: OA + OB + OC > 0A + OB + OC (3) Ta cũng có: OA + OB + OC = OA + OB + OC = (OA + OB) + OC = AB + OC > 0A + OB + OC (vì AB > 0A) Vậy ta có: OA + OB + OC > 0A + OB + OC (4) Từ (3) và (4), ta có: OA + OB + OC > 0A + OB + OC Vậy ta có: 0A + OB + OC < AB + BC + CA < OA + OB + OC

23 tháng 7 2023

em check lại nhé!

20 tháng 6 2018

7 tháng 7 2021

tham khảo nha

2 tháng 12 2018

uit n

9 tháng 2 2017

dễ mak a

a tự làm ik

20 tháng 2 2022

a. Xét △OAB có:

Q là trung điểm OB, P là trung điểm OA (gt).

\(\Rightarrow\) PQ là đường trung bình của △OAB.

\(\Rightarrow PQ=\dfrac{1}{2}AB\)

\(\Rightarrow\dfrac{PQ}{AB}=\dfrac{\dfrac{1}{2}AB}{AB}=\dfrac{1}{2}\)

-Tương tự: \(\dfrac{QR}{BC}=\dfrac{1}{2};\dfrac{PR}{AC}=\dfrac{1}{2}\)

-Xét △PQR và △ABC có:

\(\dfrac{PQ}{AB}=\dfrac{QR}{BC}=\dfrac{PR}{AC}\left(=\dfrac{1}{2}\right)\)

\(\Rightarrow\)△PQR ∼ △ABC (c-c-c).

b. Ta có: △PQR ∼ △ABC (cmt).

\(\Rightarrow\dfrac{S_{PQR}}{S_{ABC}}=\left(\dfrac{PQ}{AB}\right)^2=\left(\dfrac{1}{2}\right)^2=\dfrac{1}{4}\)

\(\Rightarrow S_{PQR}=\dfrac{1}{2}S_{ABC}=\dfrac{1}{2}.540=270\left(cm^2\right)\)

 

20 tháng 2 2022

cảm ơnnn