1.so sánh:
a)\(5^6\)và\(\left(-2\right)^{14}\)
b)\(9^5\)và \(27^3\)
c) \(\left(\frac{1}{8}\right)^6\) và \(\left(\frac{1}{32}\right)^4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \({( - 2)^4} \cdot {( - 2)^5} = {\left( { - 2} \right)^{4 + 5}} = {\left( { - 2} \right)^9}\)
\({( - 2)^{12}}:{( - 2)^3} = {\left( { - 2} \right)^{12 - 3}} = {\left( { - 2} \right)^9}\)
Vậy \({( - 2)^4} \cdot {( - 2)^5}\) = \({( - 2)^{12}}:{( - 2)^3}\);
b) \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6} = {\left( {\frac{1}{2}} \right)^{2 + 6}} = {\left( {\frac{1}{2}} \right)^8}\)
\({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2} = {\left( {\frac{1}{2}} \right)^{4.2}} = {\left( {\frac{1}{2}} \right)^8}\)
Vậy \({\left( {\frac{1}{2}} \right)^2} \cdot {\left( {\frac{1}{2}} \right)^6}\) = \({\left[ {{{\left( {\frac{1}{2}} \right)}^4}} \right]^2}\)
c) \({(0,3)^8}:{(0,3)^2} = {\left( {0,3} \right)^{8 - 2}} = {\left( {0,3} \right)^6}\)
\({\left[ {{{(0,3)}^2}} \right]^3} = {\left( {0,3} \right)^{2.3}} = {\left( {0,3} \right)^6}\)
Vậy \({(0,3)^8}:{(0,3)^2}\)= \({\left[ {{{(0,3)}^2}} \right]^3}\).
d) \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3} = {\left( { - \frac{3}{2}} \right)^{5 - 3}} = {\left( { - \frac{3}{2}} \right)^2} = {\left( {\frac{3}{2}} \right)^2}\)
Vậy \({\left( { - \frac{3}{2}} \right)^5}:{\left( { - \frac{3}{2}} \right)^3}\) = \({\left( {\frac{3}{2}} \right)^2}\).
b) \(9^5=3^{2\cdot5}=3^{10}\)
\(27^3=3^{3\cdot3}=3^9\)
=> tự kết luận
c) \(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}^3\right)^6=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}^5\right)^4=\left(\frac{1}{2}\right)^{20}\)
=> tự kết luận
a)
\(\begin{array}{l}\frac{1}{9} - 0,3.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{10}}.\frac{5}{9} + \frac{1}{3}\\ = \frac{1}{9} - \frac{3}{{2.5}}.\frac{5}{{3.3}} + \frac{1}{3}\\ = \frac{1}{9} - \frac{1}{6} + \frac{1}{3}\\ = \frac{2}{{18}} - \frac{3}{{18}} + \frac{6}{{18}}\\ = \frac{5}{{18}}\end{array}\)
b)
\(\begin{array}{l}{\left( {\frac{{ - 2}}{3}} \right)^2} + \frac{1}{6} - {\left( { - 0,5} \right)^3}\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{2}} \right)^3\\ = \frac{4}{9} + \frac{1}{6} - \left( {\frac{{ - 1}}{8}} \right)\\ = \frac{4}{9} + \frac{1}{6} + \frac{1}{8}\\ = \frac{{32}}{{72}} + \frac{{12}}{{72}} + \frac{9}{{72}}\\ = \frac{{53}}{{72}}\end{array}\)
B= (2/3-1/4+5/11):(5/12+1-7/11)
B=(8/12-3/12+5/11):(5/12+1-7/11)
B=(5/12+5/11):(5/12+1-7/11)
B=115/132:(17/12-7/11)
B=115/132:103/132
B=115/103
Mik làm mẫu cho 1 con nè. các câu sau cxn tương tự từ trái wa phải.Nều bạn tính toán kém thì cứ làm như câu mẫu trên. Mik mà làm bài này thì mik làm theo cách nhanh hơn cơ. Chúc bạn học tốt và có 1 ngày tốt lành nghen. Có j cần giúp đỡ thì cứ bảo mik
b) Ta có: \(9^5=3^{10}\) ; \(27^3=3^9\)
Mà \(3^{10}>3^9\) => \(9^5>27^3\) 9 (đpcm)
c) Ta có: \(\left(\dfrac{1}{8}\right)^6=\dfrac{1}{2^{18}}\) ; \(\left(\dfrac{1}{32}\right)^4=\dfrac{1}{2^{20}}\)
Mà \(\dfrac{1}{2^{18}}>\dfrac{1}{2^{20}}\) => \(\left(\dfrac{1}{8}\right)^6>\left(\dfrac{1}{32}\right)^4\) (đpcm)
a)\(\frac{-5}{13}+\left(\frac{3}{5}+\frac{3}{13}-\frac{4}{10}\right)=\frac{-5}{13}-\frac{3}{5}-\frac{3}{13}+\frac{4}{10}=\left(\frac{-5}{13}-\frac{3}{13}\right)+\frac{4}{10}-\frac{3}{5}=\frac{-5-3}{13}+\left(\frac{4}{10}-\frac{6}{10}\right)=\frac{-8}{13}+\frac{-2}{10}=\frac{-80}{130}+\frac{-26}{130}=\frac{-106}{130}=\frac{-53}{65}\)
b) Ta có: \(9^5=\left(3^2\right)^5=3^{10}\)
\(27^3=\left(3^3\right)^3=3^9\)
Vì 10 > 9 => 310 > 39
Vậy 95 > 273
1. So sánh :
b) 9^5 và 27^3
9^5 = ( 3^2 )^5 = 3^10
27^3 = ( 3^3 )^3 = 3^9
Vì 3^10 > 3^9 => 9^5 > 27^3
Vậy 9^5 > 27^3
c) \(\left(\frac{1}{8}\right)^6\)và \(\left(\frac{1}{32}\right)^4\)
\(\left(\frac{1}{8}\right)^6=\left(\frac{1}{2}\right)^{3.6}=\left(\frac{1}{2}\right)^{18}\)
\(\left(\frac{1}{32}\right)^4=\left(\frac{1}{2}\right)^{5.4}=\left(\frac{1}{2}\right)^{20}\)
Vì ( 1/2)^18 < (1/2)^20 => (1/8)^6 < (1/32)^4
Vậy (1/8)^6 < (1/32)^4