So sánh:
a) 4 và √15
b) √27 và 5
c) 6 và √21
d) √79 và 9
e) 7 và √47
f) √123 và 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,\left(\sqrt{27}\right)^2=27>25=5^2\Rightarrow\sqrt{27}>5\\ c,6^2=36< 41=\left(\sqrt{41}\right)^2\Rightarrow6< \sqrt{41}\\ d,\left(\sqrt{79}\right)^2=79< 81=9^2\Rightarrow\sqrt{79}< 9\\ e,7^2=49>47=\left(\sqrt{47}\right)^2\Rightarrow7>\sqrt{47}\\ f,\left(\sqrt{123}\right)^2=123>100=10^2\Rightarrow\sqrt{123}>10\)
Bài 6:
a: \(15=\sqrt{225}>\sqrt{200}\)
b: \(27=9\sqrt{9}>9\sqrt{5}\)
c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)
a) Ta có:
\(\begin{array}{l}\frac{{123}}{7} = \frac{{123.4}}{{7.4}} = \frac{{492}}{{28}}\\17,75 = \frac{{1775}}{{100}} = \frac{{71}}{4} = \frac{{71.7}}{{4.7}} = \frac{{497}}{{28}}\end{array}\)
Vì 492 < 497 nên \(\frac{{492}}{{28}} < \frac{{497}}{{28}}\) hay \(\frac{{123}}{7} < 17,75\)
b) Ta có:
\(\begin{array}{l} - \frac{{65}}{9} = \frac{{( - 65).8}}{{9.8}} = \frac{{ - 520}}{{72}}\\ - 7,125 = \frac{{ - 7125}}{{1000}} = \frac{{ - 57}}{8} = \frac{{ - 57.9}}{{8.9}} = \frac{{ - 513}}{{72}}\end{array}\)
Vì 520 > 513 nên -520 < -513. Do đó, \(\frac{{ - 520}}{{72}} < \frac{{ - 513}}{{72}}\) hay \( - \frac{{65}}{9}\) < -7,125
a: Ta có: \(81^{125}=3^{500}\)
\(27^{130}=3^{390}\)
mà 500>390
nên \(81^{125}>27^{130}\)
em trả lời ccaua này hi vọng thầy còn nhớ em
a) -9/4<`1/3
a,Ta có:\(2=\sqrt{4}\)
Vì \(\sqrt{4}>\sqrt{3}\)
\(\Rightarrow2>\sqrt{3}\)
b,Ta có:\(6=\sqrt{36}\)
Vì \(\sqrt{36}< \sqrt{41}\)
\(\Rightarrow6< \sqrt{41}\)
c,Ta có:\(7=\sqrt{49}\)
Vì \(\sqrt{49}>\sqrt{47}\)
\(\Rightarrow7>\sqrt{47}\)
a) 2 =√4 > √3 ;
b) 6=√36 < √41 ;
c) 7=√49 > √47
c.
(\sqrt{5}-\sqrt{3})-(\sqrt{10}-\sqrt{7})=(\sqrt{5}+\sqrt{7})-(\sqrt{3}+\sqrt{10})
Mà:
\((\sqrt{5}+\sqrt{7})^2=12+\sqrt{35}< 12+\sqrt{36}=18\)
\((\sqrt{3}+\sqrt{10})^2=13+\sqrt{30}>13+\sqrt{25}=18\)
\(\Rightarrow \sqrt{3}+\sqrt{10}> \sqrt{5}+\sqrt{7}\Rightarrow \sqrt{5}-\sqrt{3}< \sqrt{10}-\sqrt{7}\)
Lời giải:
a.
$5+\sqrt{2}>5+\sqrt{1}=6$
$4+\sqrt{3}< 4+\sqrt{4}=6$
$\Rightarrow 5+\sqrt{2}>4+\sqrt{3}$
b.
$\sqrt{8}-\sqrt{2}=2\sqrt{2}-\sqrt{2}=\sqrt{2}$
$\sqrt{5}-\sqrt{3}=\frac{5-3}{\sqrt{5}+\sqrt{3}}=\frac{2}{\sqrt{5}+\sqrt{3}}< \frac{2}{\sqrt{2}}=\sqrt{2}$
Vậy $\sqrt{8}-\sqrt{2}>\sqrt{5}-\sqrt{2}$
\(a,4^2=16>15=\left(\sqrt{15}\right)^2\Rightarrow4>\sqrt{15}\\ b,\left(\sqrt{27}\right)^2=27>25=5^2\Rightarrow\sqrt{27}>5\\ c,6^2=36>21=\left(\sqrt{21}\right)^2\Rightarrow6>\sqrt{21}\\ d,\left(\sqrt{79}\right)^2=79< 81=9^2\Rightarrow\sqrt{79}< 9\\ e,7^2=49>47=\left(\sqrt{47}\right)^2\Rightarrow7>\sqrt{47}\\ f,\left(\sqrt{123}\right)^2=123>100=10^2\Rightarrow\sqrt{123}>10\)