27n . 9n = 927 : 81
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(\lim (\sqrt[3]{27n^3-6n+n}-\sqrt{9n^2+1})=\lim [(\sqrt[3]{27n^3-5n}-3n)-(\sqrt{9n^2+1}-3n)]\)
\(=\lim [\frac{-5n}{\sqrt[3]{(27n^3-5n)^2}+3n\sqrt[3]{27n^3-5n}+9n^2}-\frac{1}{\sqrt{9n^2+1}+3n}]\)
\(=(0-0)=0\)
-n^3+9n^2-27n+31 chia hết cho -n+3
=>n^3-9n^2+27n-31 chia hết cho n-3
=>n^3-3n^2-6n^2+18n+9n-27-4 chia hết cho n-3
=>n-3 thuộc {1;-1;2;-2;4;-4}
=>n thuộc {4;2;5;1;7;-1}
a) Nếu n chia hết cho 3 thì tổng của 111...111 ( n chữ số 1 ) là 1 + 1 + 1 + ... + 1 + 1 + 1 ( 3n chữ số 1 ) chia hết cho 3
Nếu n chia 3 dư 1 thì 1 + 1 + 1 + ... + 1 + 1 + 1 ( 3n + 1 chữ số 1 ) chia 3 dư 1 nhưng 2n chia 3 dư 2
Nếu n chia 2 dư 1 thì 1 + 1 + 1 + ... + 1 + 1 + 1 ( 3n + 2 chữ số 1 ) chia 3 dư 1 nhưng 2n chia 3 dư 1
Vậy dù n chia 3 dư mấy thì 2n + 111...111 ( n chữ số 1 ) luôn chia hết cho 3 ( đpcm )
8264 + 927 < 927 + 8300
8264 + 927 > 900 + 8264
927 + 8264 = 8264 + 927
Ta có :
10n−9n−1=(10n−1)−9n=99999.....99999−9n10n−9n−1=(10n−1)−9n=99999.....99999−9n(n chữ số 9)
=9(1111.....111−n)=9(1111.....111−n)(n chữ số 1)
Thấy : 1111.....1111111.....111(n chữ số 1) có tổng các chữ số là n
Nên 1111....111−n⋮31111....111−n⋮3
Vì n ⋮3 thì cũng ⋮81
⇒9(1111....1111−n)⇒9(1111....1111−n)(n chữ số 1) chia hết cho 81
Hay 10n−9n−1⋮2710n−9n−1⋮81(đpcm)
# Chúc bạn học tốt
\(27^n.9^n=3^{3n}.3^{2n}=3^{5n}\)
\(9^{27}\div81=3^{54}\div3^4=3^{50}\)
\(\Leftrightarrow3^{5n}=3^{50}\Leftrightarrow n=10\)