K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ACBM có

BM//AC

AM//BC

Do đó: ACBM là hình bình hành

b: Xét tứ giác ABDE có góc AEB=góc BDA=góc EBD=90 độ

nên ABDE là hình chữ nhật

c: Xét tứ giác ABCK có

D là trung điểm chung của AC và BK

nên ABCK là hình bình hành

mà BA=BC

nên ABCK là hình thoi

a) Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE(cạnh huyền-góc nhọn)

Suy ra: BD=CE(hai cạnh tương ứng)

b) Ta có: ΔABD=ΔACE(cmt)

nên AD=AE(hai cạnh tương ứng)

Xét ΔADE có AD=AE(cmt)

nên ΔADE cân tại A(Định nghĩa tam giác cân)

12 tháng 3 2020

A B C K E M y x D

a, xét tứ giác ACBM có: BM // AC (gt) và AM // BC (gt)

=> ACBM là hình bình hành (đn)

b, BE // AD (gt) 

BD _|_ AD (gt)

=> BE _|_ AD  (đl)

=> ^EBD = 90 = ^BDA = ^AEB 

=> ADBE là hình chữ nhật (dh)

c, Tam giác ABC cân tại B (gt) ; BD là đường cao (gt)

=> BD là trung tuyến của tam giác ABC (đl)

=> D là trung điểm của AC (Đn)

D là trung điểm của BK do B đối xứng với K qua D (Gt)

=> BAKC là hình bình hành (dh)

mà BD _|_ AC (Gt)

=> BAKC là hình thoi (dh)

d, có BAKC là hình thoi (câu c)

=> AK // BC (tc)

AM // BC (gt)              

=> A; M; K thẳng hàng (tiên đề Ơclit)            (1)

AK = BC do BAKC là hình thoi  (câu c)

AM = BC do ACBM là hình bình hành (câu a) 

=> AM = MK         và (1)

=> A là trung điểm của KM (đn)

=> M đối xứng với K qua A (đn)

e, BMKC là hình thang (KM // BC)

để BMKC là hình thang cân 

<=> ^BMK = ^MKC (dh)

^BMK =  ^BCA do BMAC là hình bình hành (câu a)

^AKC = ^CBK do AKCB là hình thoi (câu c)

<=> ^ABC = ^ACB 

mà tam giác ABC cân tại B (Gt)

<=> tam giác ABC đều

9 tháng 2 2020

MỌI NGƯỜI CỨU MÌNH. HELP MEEEEEE

9 tháng 2 2020

Hây yooo taaaaa

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Lời giải:
a. 

Xét tam giác $ABH$ và $ACH$ có:

$AB=AC$ (do $ABC$ cân tại $A$)

$AH$ chung 

$\widehat{AHB}=\widehat{AHC}=90^0$

$\Rightarrow \triangle ABH=\triangle ACH$ (ch-cgv) 

b. 

Do $BD\parallel AC$ nên $\widehat{DBH}=\widehat{HCA}=\widehat{ABH}$ (hai góc so le trong)

Xét tam giác $DBH$ và $ABH$ có:
$BH$ chung

$\widehat{DBH}=\widehat{ABH}$ (cmt) 

$\widehat{BHD}=\widehat{BHA}=90^0$

$\Rightarrow \triangle DBH=\triangle ABH$ (g.c.g)

$\Rightarrow DB=AB$ (đpcm)

AH
Akai Haruma
Giáo viên
1 tháng 5 2023

Hình vẽ: