K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2017

Bài 2 : 

 Ta có : \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\in R\)

\(\Rightarrow A=\frac{3}{4}+\left(x-\frac{1}{2}\right)^2\ge\frac{3}{4}\forall x\in R\)

Vậy Amin = \(\frac{3}{4}\) dấu "=" chỉ sảy ra khi x = \(\frac{1}{2}\)

6 tháng 7 2017

Cảm ơn bạn nhiều nha

Còn câu b bạn suy nghĩ được chưa

26 tháng 8 2018

a) ĐK : \(x\ne1;x\ne2;x\ne3\)

\(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(\Leftrightarrow K=\left(\frac{x^2}{\left(x-3\right)\left(x-2\right)}+\frac{x^2}{\left(x-2\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(\Leftrightarrow K=\left(\frac{2x^2}{\left(x-1\right)\left(x-3\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(\Leftrightarrow K=\frac{2x^2}{x^4+x^2+1}\)

26 tháng 8 2018

a, \(K=\left(\frac{x^2}{x^2-5x+6}+\frac{x^2}{x^2-3x+2}\right).\frac{\left(x-1\right)\left(x-2\right)}{x^4+x^2+1}\) 

\(=\left(\frac{x^2}{\left(x-3\right)\left(x-2\right)}+\frac{x^2}{\left(x-2\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(=\left(\frac{x^2\left(x-1\right)+x^2\left(x-3\right)}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}\right).\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(=\frac{x^3-x^2+x^3-3x^2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}.\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(=\frac{2x^3-4x^2}{\left(x-1\right)\left(x-2\right)\left(x-3\right)}.\frac{\left(x-1\right)\left(x-3\right)}{x^4+x^2+1}\)

\(=\frac{2x^3-4x^2}{\left(x-2\right)\left(x^4+x^2+1\right)}\)

\(=\frac{2x^2\left(x-2\right)}{\left(x-2\right)\left(x^4+x^2+1\right)}\)

\(=\frac{2x^2}{x^4+x^2+1}\)

a: \(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\dfrac{\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}-\sqrt{b}=-2\sqrt{b}\)

b: \(B=\dfrac{2\sqrt{x}-x-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{x-1}\)

\(=\dfrac{-2x+\sqrt{x}-1}{\sqrt{x}-1}\cdot\dfrac{1}{x-1}\)

c: \(C=\dfrac{x-9-x+3\sqrt{x}}{x-9}:\left(\dfrac{3-\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+3}+\dfrac{x-9}{x+\sqrt{x}-6}\right)\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}:\dfrac{9-x+x-4\sqrt{x}+4+x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\cdot\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}{x-4\sqrt{x}+4}\)

\(=\dfrac{3}{\sqrt{x}-2}\)

6 tháng 9 2016

Câu a hình như sai đề mk sửa nha

a)\(A=\left(2x+\frac{1}{3}\right)^4-1\)

         Vì \(\left(2x+\frac{1}{3}\right)^4\ge0\)

      Suy ra:\(\left(2x+\frac{1}{3}\right)^4-1\ge-1\)

                   Dấu = xảy ra khi \(2x+\frac{1}{3}=0\)

                                               \(2x=-\frac{1}{3}\)

                                                \(x=-\frac{1}{6}\)

Vậy Min A=-1 khi \(x=-\frac{1}{6}\)

6 tháng 9 2016

b)\(B=-\left(\frac{4}{9}x-\frac{2}{15}\right)^6+3\)

    \(B=3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\)

           Vì \(-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le0\)

                     Suy ra:\(3-\left(\frac{4}{9}x-\frac{2}{15}\right)^6\le3\)

Dấu = xảy ra khi \(\frac{4}{9}x-\frac{2}{15}=0\)

                            \(\frac{4}{9}x=\frac{2}{15}\)

                            \(x=\frac{3}{10}\)

     Vậy Max B=3 khi \(x=\frac{3}{10}\)

7 tháng 8 2016

diều kiện x >= 0

P=\(\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right).\frac{4\sqrt{x}}{3}\)

\(\frac{x+2-x+\sqrt{x}-1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)

=\(\frac{\sqrt{x}+1}{x\sqrt{x}+1}.\frac{4\sqrt{x}}{3}\)=\(\frac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)

P=8/9

<=> \(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

<=> \(3\sqrt{x}=2x-2\sqrt{x}+1\)

<=> \(2x-5\sqrt{x}+2=0\)

<=> \(\left[\begin{array}{nghiempt}x=4\\x=\frac{1}{4}\end{array}\right.\)

vậy x=4 hoặc x=1/4 thì p=8/9

 

 

7 tháng 8 2016

a) \(P=\left(\frac{x+2}{x\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\right)\cdot\frac{4\sqrt{x}}{3}\left(ĐK:x\ge0;x\ne-1\right)\)

\(=\left[\frac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\frac{4\sqrt{x}}{3}\)

\(=\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P=8/9

\(\Leftrightarrow\)\(\frac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\frac{8}{9}\)

\(\Leftrightarrow24\left(x-\sqrt{x}+1\right)=36\sqrt{x}\)

\(\Leftrightarrow24x-24\sqrt{x}+24-36\sqrt{x}=0\)

\(\Leftrightarrow24x-60\sqrt{x}+24=0\)

\(\Leftrightarrow12\left(2x-5\sqrt{x}+2\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{x}\right)-\left(4\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\sqrt{x}\left(2\sqrt{x}-1\right)-2\left(2\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2\sqrt{x}-1=0\\\sqrt{x}-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{x}=\frac{1}{2}\\\sqrt{x}=2\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{4}\left(tm\right)\\x=4\left(tm\right)\end{array}\right.\)