cmr:
tong 2 so tu nhien lien tiep chia het cho 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tổng 5 chữ sô chữ nhiên liên tiếp vẫn chia hết cho 5 sao mà chứng minh được \(VD:1+2+3+4+5=15⋮5\)
Gọi 3 số tự nhiên liên tiếp là a , b , c
a = x . 3
b = x . 3 + 1
c = x . 3 + 2
Tổng của chúng là x . 3 + x . 3 + 1 + x . 3 + 2 = x . 3 . 3 + 1 + 2 = x . 3 . 3 + 3 = x . 9 + 3
Các số hạng của tổng đều chia hết cho 3
=> x . 9 + 3 chia hết cho 3 <=> tổng của 3 số tự nhiên liên tiếp chia hết cho 3
b ) Tương tự câu đầu
Gọi 3 số liên tiếp lần lượt là: a;a+1;a+2
Ta có a+(a+1)+(a+2)=(a+a+a)+(1+2)=3a+3 chia hết cho 3(điều phải chứng minh)
Gọi 4 số tự nhiên liên tiếp lần lượt là: a;a+1;a+2;a+3
Ta có: a+(a+1)+(a+2)+(a+3)=(a+a+a+a)+(1+2+3)=4a+6 không chia hết cho 4(diều phải chứng minh)
a) Hai số tự nhiên liên tiếp luôn có một số lẻ và một số chẵn. Mà số chẵn chia hết cho 2 → ĐPCM
b) Gọi số tự nhiên đầu tiên là a + 1, thì 3 số tiếp theo là : a + 2; a + 3 → Luôn có a + 1 hoặc a + 2 hoặc a + 3 chia hết cho 3 → ĐPCM
~ Chúc học tốt ~
Ai ngang qua xin để lại 1 L - I - K - E
a) Số số hạng từ 1 đến 2000 là :
( 2000 - 1 ) : 1 + 1 = 2000 ( số )
Tổng từ 1 đến 2000 là :
( 2000 + 1 ) x 2000 : 2 = 2001000
Vì 2001000 có tận cùng là 0 nên tổng chia hết cho 5
b) Số số hạng từ 1 đến 2001 là :
( 2001 - 1 ) : 1 + 1 = 2001 ( số )
Tổng từ 1 đến 2001 là :
( 2001 + 1 ) x 2001 : 2 = 2003001
Vì 2003001 có tận cùng là 1 nên không chia hết cho 2 mà 2003001 : 7 = 286143 nên tổng chia hết cho 7 tick đúng nha ha quang dung
a. Gọi 3 số đó là a , a+1, a+2
Ta có: a+ a+1 + a+2 = 3a +3
3 chia hết cho 3 => 3a chia hết cho 3
=> 3a+3 chia hết cho 3
=> Tổng của 3 số tự nhiên liên tiếp luôn chia hết cho 3
a. Gọi 4 số đó là a , a+1, a+2 ,a+4
Ta có: a+ a+1 + a+2 +a+4 = 4a +4
4 chia hết cho 4 => 4a chia hết cho 4
=> 4 a+4 chia hết cho 4
=> Tổng của 4 số tự nhiên liên tiếp luôn chia hết cho 4
ban tren lam sai roi kia vi ho noi khong chia het cho 4 ma
b)goi 3 số tự nhiên la a, a+1, a+2
tổng 3 số la 3a+3 chia hết cho 3
a)Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N )
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3
Bạn Đào đúng vì trong 4 số tự nhiên liên tiếp luôn luôn có 2 số chia hết cho 2
số 7 và số 8
7+8=15
15 chia hết cho 3
chưa chắc đúng
chỉ cần 1 ví dụ là bt: 2 + 3 = 5 ko chia hết cho 3