chứng minh rằng trong một tam giác ba chân đường cao, trung điểm các cạnh,trung điểm đoạn thẳng nối trực tâm của tam giác với các đỉnh cùng đi qua một đường tròn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BFED có
ED//BF
FE//BD
Do đó: BFED là hình bình hành
Xét ΔABC có
D là trung điểm của BC
DE//AB
Do đó: E là trung điểm của AC
Xét ΔABC có
E là trung điểm của AC
EF//CB
Do đó: F là trung điểm của AB
Xét ΔCDE và ΔEFA có
CD=EF
DE=FA
CE=EA
Do đó: ΔCDE=ΔEFA
b: Gọi ΔABC có F là trung điểm của AB,E là trung điểm của AC
Trên tia FE lấy điểm E sao cho E là trung điểm của FK
Xét tứ giác AFCK có
E là trung điểm của AC
E là trung điểm của FK
Do đó: AFCK là hình bình hành
Suy ra: AF//KC và KC=AF
hay KC//FB và KC=FB
Xét tứ giác BFKC có
KC//FB
KC=FB
Do đó: BFKC là hình bình hành
Suy ra: FE//BC(ĐPCM)
I, J, K lần lượt là chân đường cao hạ từ A, B, C; H là giao điểm ba đường cao
M, N, P lần lượt là trung điểm của BC , AC, AB
D, E, F lần lượt là trung điểm của HA, HB, HC
O là giao điểm của NE và PF
+) NP là đường trung bình tam giác ABC => NP//=1/2 BC (1)
EF là đường trung bình tam giác HCB => EF//=1/2 BC (2)
Từ (1), (2) => NFEP là hình bình hành (3)
NF là đường trung bình tam giác ACH => NF//AH=> NF//AI mà AI vuông BC , BC//EF => NF vuông EF (4)
Từ (3), (4) => NFEP là hình chữ nhật => Tâm đường tròn ngoại tiếp NFEP là O giao của FP và NE
và O là trung điểm FP, O là trung điểm NE
+) Tương tự NDEM là hình chữ nhật => Tâm đường tròn ngoại tiếp NDEM là O ( trung điểm NE)
=> O là trung điểm DM
+) Tam DIM vuông tại I => Tâm đường tròn ngoại tiếp DIM là O trung điểm DM
+) Tương tự O là tâm đường tròn ngoại tiếp tam giác FJP, EKN
=> Vậy 9 điểm trên cùng thuộc đường tròn tâm O đường kính NE
Câu hỏi của Mavis Vermillion - Toán lớp 9 - Học toán với OnlineMath Em tham khảo ở link này nhé!