K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

Xét F(x)=a0x+a1.sinx+a2.sin2x2+...+an.sinnxnF(x)=a0x+a1.sinx+a2.sin2x2+...+an.sinnxn

⇒F′(x)=f(x)>0∀x∈R⇒F′(x)=f(x)>0∀x∈R

suy ra F(x) đồng biến trên R

⇒F(π)>F(0)⇔a0.π>0⇔a0>0⇒F(π)>F(0)⇔a0.π>0⇔a0>0

7 tháng 5 2019

Đáp án là B

27 tháng 7 2017

9 tháng 5 2017

27 tháng 12 2019

30 tháng 9 2019

Đáp án A

Ta có: 1 + x + x 2 n = 1 + x 1 + x n = ∑ k = 0 n C k n x k 1 + x k

= ∑ k = 0 n C n k x k ∑ j = 0 k C j k x k ⇒ T k + 1 = C k n x k ∑ j = 0 k C j k x k

Ta tính các số hạng như sau:

T 0 = 1 ;

T 1 = C n 1 C n 2 x + C n 1 C 1 1 x 2 = n x ; T 2 = C n 2 C n 0 x 2 + C n 2 C 2 1 x 3 + C n 2 C 2 2 x 4 , ....  

Như vậy ta có:

a 3 = C n 2 C 2 1 + C n 3 C 2 0 ; a 4 = C n 2 C 2 2 + C n 3 C 3 1 + C n 4 C 4 0    

Theo giả thiết  

a 3 14 = a 4 41 ⇒ C n 2 C 2 1 + C n 3 C 2 0 14 = C n 2 C 2 2 + C n 3 C 3 1 + C n 4 C 4 0 41

⇔ 2. n n − 1 2 ! + n n − 1 n − 2 3 ! 14 = n n − 1 2 ! + 3 n n − 1 n − 2 3 ! + n n − 1 n − 2 n − 3 4 ! 41

⇔ 21 n 2 − 99 n − 1110 = 0 ⇒ n = 10

Trong khai triển:

1 + x + x 2 10 = a 0 + a 1 x + a 2 x 2 + ... + a 20 x 20

cho x = 1 ta được:  S = a 0 + a 1 + a 2 + ... + a 20 = 3 10

24 tháng 4 2017

Chọn A