tìm giá trị nhỏ nhất của biểu thứ sau :
a) A=|x+3/2|
b)=|x-1/2| + 3/4
mn giúp e vs ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)\(A=|x|+|2014-x|\ge|x+2014-x|=2014\)
Dấu '=' xảy ra khi\(x\left(2014-x\right)>0\)
TH1:\(\hept{\begin{cases}x>0\\2014-x>0\end{cases}\Leftrightarrow0< x< 2014\left(n\right)}\)
TH2:\(\hept{\begin{cases}x< 0\\2014-x< 0\end{cases}\left(l\right)}\)
Vậy \(A_{min}=2014\)khi\(0< x< 2014\)
\(b.\)\(|x^2+|x-1||=x^2+2\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+|x-1|=-x^2-2\\x^2+|x-1|=x^2+2\end{cases}\Leftrightarrow\orbr{\begin{cases}|x-1|=-2x^2-2\left(l\right)\\|x-1|=2\left(n\right)\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=-2\\x-1=2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
V...
bạn đăg tách ra cho m.n cùng giúp nhé
Bài 2 :
a, \(A=\left|2x-4\right|+2\ge2\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN A là 2 khi x = 2
b, \(B=\left|x+2\right|-3\ge-3\)
Dấu ''='' xảy ra khi x = -2
Vậy GTNN B là -3 khi x = -2
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a, ta có |x|;|x+2|\(\ge\)0
=>GTNN là 2 tại x=-2;x=0;x=-1
b,ta có|5-x|;|7-x|\(\ge\)0
=>GTNN là 2 tại x=7;5;6
1:
a: \(A=2+3\sqrt{x^2+1}>=3\cdot1+2=5\)
Dấu = xảy ra khi x=0
b: \(B=\sqrt{x+8}-7>=-7\)
Dấu = xảy ra khi x=-8
\(b)B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
Dùng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-\frac{1}{2}\right|\ge0\)\(\forall\)\(x\)
\(\Rightarrow\)\(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)
\(\Rightarrow\)\(\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\)\(\forall\)\(x\)
Hay \(B\ge\frac{3}{4}\)\(\forall\)\(x\)
Dấu "=" xảy ra khi :
\(\Leftrightarrow\)\(\left|x-\frac{1}{2}\right|=0\)
\(\Leftrightarrow x-\frac{1}{2}=0\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy GTNN của \(B=\frac{3}{4}\)đạt được khi \(x=\frac{1}{2}\)
\(A=\left|x+\frac{3}{2}\right|\ge0\)
\(MinA=0\Rightarrow\left|x+\frac{3}{2}\right|=0\Rightarrow x=\frac{-3}{2}\)
\(B=\left|x-\frac{1}{2}\right|+\frac{3}{4}\)
\(B\ge\frac{3}{4}\)do\(\left|x-\frac{1}{2}\right|\ge0\)
\(MinB=\frac{3}{4}\Rightarrow\left|x-\frac{1}{2}\right|=0\Rightarrow x=\frac{1}{2}\)