Tìm các số nguyên x sao cho giá trị các phân thức sau là số nguyên
a, A =\(\frac{2x+3}{x+1}\)
b, B=\(\frac{^{x^2}+2x+3}{x+2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\frac{2x+4}{x-3}=\frac{2x-6+6+4}{x-3}=\frac{2x-6+10}{x-3}=\frac{2x-6}{x-3}+\frac{10}{x-3}=\)\(2+\frac{10}{x-3}\) Vay de 2x+4 /x-3 la so nguyen thi 2+10/x-3 phai la so nguyen hay 10/x-3 la so nguyen Suy ra x-3 thuoc uoc cua 10=(1;-1;2;-2;5;-5;10;-10) Roi giai ra tung truong hop
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
\(a,\frac{-24}{x}+\frac{18}{x}=\frac{-24+18}{x}=\frac{-6}{x}\)
\(\Leftrightarrow x\inƯ(-6)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
\(b,\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2(x+1)-7}{x+1}=2-\frac{7}{x+1}\)
\(\Leftrightarrow7⋮x+1\Leftrightarrow x+1\inƯ(7)=\left\{\pm1;\pm7\right\}\)
Xét các trường hợp rồi tìm được x thôi :>
\(c,\frac{3x+2}{x-1}-\frac{x-5}{x-1}=\frac{3x+2-x-5}{x-1}=\frac{2x+7}{x-1}=\frac{2x-2+9}{x-1}=\frac{2(x-1)+9}{x-1}=2+\frac{9}{x-1}\)
\(\Leftrightarrow9⋮x-1\Leftrightarrow x-1\inƯ(9)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\Leftrightarrow x\in\left\{2;0;4;-2;10;-8\right\}\)
d, TT
để A thuộc Z
=>2x+1 chia hết x-3
<=>2(x-3)+7 chia hết x-3
=>7 chia hết x-3
=>x-3 thuộc {1,-1,7,-7}
=>x thuộc {4,2,10,-4}
để B thuộc Z
=>x2-1 chia hết x+1
<=>x(x+1)-2 chia hết x+1
=>2 chia hết x+1
=>x+1 thuộc {1,-1,2,-2}
=>x thuộc {0,-2,1,-3}
\(A=\frac{2x+3}{x+1}=\frac{2\left(x+1\right)+1}{x+1}=2+\frac{1}{x+1}\)
để \(A\in Z\)<=> \(\frac{1}{x+1}\in Z\)
mà \(x\in Z\)=> \(x+1\inƯ\left(1\right)\)
<=> \(x+1\in\left(1;-1\right)\)
<=> \(x\in\left(0;-2\right)\)
\(B=\frac{x^2+2x+3}{x+2}=\frac{x\left(x+2\right)+3}{x+2}=x+\frac{3}{x+2}\)
để \(B\in Z\)<=> \(\frac{3}{x+2}\in Z\)
mà \(x\in Z\)=> \(x+2\inƯ\left(3\right)\)
<=> \(x+2\in\left(1;-1;3;-3\right)\)
<=> \(x\in\left(-1;-3;1;-5\right)\)