K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

\(\left(x-3\right)\left(x+5\right)+20\ge4\)

<=>  \(x^2+2x-15+20\ge4\)

<=>  \(\left(x^2+2x+1\right)+4\ge4\)

<=>  \(\left(x+1\right)^2+4\ge4\)  luôn đúng

Dấu "=" xảy ra   <=>   \(x=-1\)

1 tháng 8 2018

Ta có: 

     \((x-3)(x+5)+20\geq4\)

\(\Leftrightarrow (x-3)(x+5)\geq-16\)

\(\Leftrightarrow (x-3)x+(x-3)5\geq-16\)

\(\Leftrightarrow x^2-3x+5x-15\geq-16\)

\(\Leftrightarrow x^2+2x-15\geq-16\)

\(\Leftrightarrow x^2-2x\geq-16+15\)

\(\Leftrightarrow x^2-2x\geq-1\)

\(\Leftrightarrow x(x-2)\geq-1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x(x-2)=-1\)

Mà \(x>x-2\)

\(\Rightarrow\)\(x=1;x-2=-1\)

28 tháng 3 2020

Bài giải 

Ta có : ( x- 3 ) 2 \(\ge\)0 <=> x2 - 6.x + 9 \(\ge\) 0 <=> x. ( x - 1 ) \(\ge\)5.x-9 .Tương tự : y. ( y - 1 )\(\ge\) 5.y - 9 . 

Từ đó : x . ( x - 1 ) + y . ( y - 1 ) \(\ge\) 5. ( x + y ) -18 \(\ge\) 5. 6 - 18 = 12 . Khi x = y = 3 thì đẳng thức xảy ra  => đpcm 

Em học lớp 8 nên không chắc lắm, vì đội tuyển có dạng này rồi nên em giúp chị nhé :

Áp dụng BĐT Cauchy cho hai số a,b dương ta có :

\(\left(a+b\right)\ge2\cdot\sqrt{ab}\) (1)

\(\frac{1}{a}+\frac{1}{b}\ge2\cdot\sqrt{\frac{1}{ab}}\) (2)

Nhân vế với vế của BĐT (1) và (2) ta được :

\(\left(a+b\right)\left(\frac{1}{b}+\frac{1}{b}\right)\ge2\cdot\sqrt{ab}\cdot2\cdot\sqrt{\frac{1}{ab}}=4\)

Dấu "=" xảy ra \(\Leftrightarrow a=b\) (đpcm)

2 tháng 1 2020

chị cảm ơn nhé lớp 8 thế là giỏi rồi

ở đâu zậy

13 tháng 7 2018

\(\left|x-1\right|+\left|x-3\right|+\left|x-5\right|+\left|x-7\right|=\left(\left|x-1\right|+\left|x-7\right|\right)+\left(\left|x-3\right|+\left|x-5\right|\right)\\ \)

\(=\left(\left|x-1\right|+\left|7-x\right|\right)+\left(\left|x-3\right|+\left|5-x\right|\right)\)

\(\ge\left|x-1+7-x\right|+\left|x-3+5-x\right|=\left|6\right|+\left|2\right|=8\)

13 tháng 7 2018

\(\left|x+1\right|+\left|x+3\right|+\left|x+5\right|=\left(\left|x+1\right|+\left|x+3\right|\right)+\left|x+5\right|=\left(\left|x+1\right|+\left|3-x\right|\right)+\left|x+5\right|\)

\(\ge\left|x+1+3-x\right|+\left|x+5\right|=\left|4\right|+\left|x+5\right|=4+\left|x+5\right|\ge4\)

\(\left|x-1\right|+2\left|x-3\right|+\left|x-5\right|=\left(\left|x-1\right|+\left|x-5\right|\right)+2\left|x-3\right|=\left(\left|x-1\right|+\left|5-x\right|\right)+2\left|x-3\right|\)

\(\ge\left|x-1+5-x\right|+2\left|x-3\right|=\left|4\right|+2\left|x-3\right|=4+2\left|x-3\right|\ge4\)

10 tháng 11 2019

Giải xàm tí ạ!\(VT-VP=\frac{1}{2}\left[\left(x^2-3x+1\right)^2+\left(y^2-3y+1\right)^2+\left(x-y\right)^2\left(5-x-y\right)\left(x+y-1\right)\right]\ge0\)

=> qed

12 tháng 11 2019

??? KHang ơi! Sai rồi ? Tại sao VT - Vp = 1/2. Dòng thứ 2 ??? 

12 tháng 10 2020

\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Cái này chuẩn CBS dạng đặc biệt với hai tử số bằng 1

Dấu "=" xảy ra khi \(a=b\)

13 tháng 10 2020

Cauchy đi mài ._.

Vì a, b > 0 nên áp dụng bđt Cauchy cho :

  • Bộ số a, b ta được :

\(a+b\ge2\sqrt{ab}\)

  • Bộ số 1/a, 1/b ta được :

\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}\cdot\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=2\cdot\frac{\sqrt{1}}{\sqrt{ab}}=\frac{2}{\sqrt{ab}}\)

Nhân hai vế tương ứng ta có đpcm

Dấu "=" xảy ra <=> a = b 

14 tháng 12 2016

Nguyên trang bất đăng thức Bunhacoxki  rồi.