Choa,b,c,d>0 t/m ab=cd=1
CMR: (a+b)(c+d)+4>= 2(a+b+c+d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Zới mọi \(x,y>0\), áp dụng BĐT AM-GM ta có
\(x^2+y^2=\frac{2xy\left(x^2+y^2\right)}{2xy}\le\frac{\frac{\left(2xy+x^2+y^2\right)^2}{4}}{2xy}=\frac{\left(x+y\right)^4}{8xy}\)
sử dụng kết quả trên ta thu đc các kết quả sau
\(a^2+c^2\le\frac{\left(a+c\right)^4}{8ac}=\frac{\left(a+c\right)^4bd}{8abcd}\le\frac{\left(a+c\right)^4\left(b+d\right)^2}{32abcd}\)
\(b^2+d^2\le\frac{\left(b+d\right)^4}{8bd}=\frac{\left(b+d\right)^4ac}{8abcd}\le\frac{\left(b+d\right)^4\left(c+a\right)^2}{32abcd}\)
Như zậy ta chỉ còn cần CM đc
\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{cd}+\frac{1}{da}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)
BĐT trên tương đương zới
\(\frac{\left(a+c\right)\left(b+d\right)}{abcd}\ge\frac{\left(a+c\right)^2\left(b+d\right)^2\left[\left(a+c\right)^2+\left(b+d\right)^2\right]}{32abcd}\)
hay
\(\left(a+c\right)\left(b+d\right)\left[\left(a+c\right)^2+\left(b+d\right)^2\right]\le32\)
đến đây bạn lại sử dụng kết quả trên ta có ĐPCM nhá
Dễ thấy đẳng thức xảy ra khi a=b=c=d=1
Ta có: \(\frac{a}{b}\)<\(\frac{c}{d}\)-->ad<bc (b,d>0)
Gỉa sử \(\frac{a}{b}\)<\(\frac{ab+cd}{b^2+d^2}\) đúng
a (b2+d2)<b(ab+cd) (b,d>0)
<=> ab2+ad2<ab2+bcd
<=> ad2-bcd<0
<=> d(ad-bc)<0 (*)
mà d>0; ad<bc(cmt)--> ad-bc<0
nên (*) đúng.
cm tiếp vế kia cũng như thế rồi kết luận
Đặt \(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)
Thế vào đề ta được
\(xy+4\ge2\left(x+y\right)\)
\(\Leftrightarrow xy-2x+4-2y\ge0\)
\(\Leftrightarrow\left(y-2\right)\left(x-2\right)\ge0\)
Chứng minh \(\left(y-2\right)\left(x-2\right)\ge0\)
Ta có : (Đây là phần mình chứng minh nha, có gì sai mong bạn chỉ bảo )
\(\left\{{}\begin{matrix}x=a+b\\y=c+d\end{matrix}\right.\)
Áp dụng bđt Cosi ta được :
\(\left\{{}\begin{matrix}x=a+b\ge2\sqrt{ab}\\y=c+d\ge2\sqrt{cd}\end{matrix}\right.\)
Mà ab=cd=1
Nên \(\left\{{}\begin{matrix}x=a+b\ge2\\y=c+d\ge2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\y-2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)\left(y-2\right)\ge0\)
=> ĐPCM