Cho A =\(\dfrac{1.3.5...4095}{2.4.6...4096}\)
So sánh A với \(\dfrac{1}{64}\)
Bạn nào trả lời nhanh và đúng mình tick cho.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2023/2022=1+1/2022
2022/2021=1+1/2021
mà 2022>2021
nên 2023/2022<2022/2021
a)
Ta có : \(32^{13}=\left(2^5\right)^{13}=2^{65}\)
\(64^{10}=\left(2^6\right)^{10}=2^{60}\)
Mà \(2^{65}>2^{60}\Rightarrow.....\)
b)
A = 2 + 2.2 + 2.2.2 + ... + 2.2.2.2....2
A = \(2+2^2+2^3+...+2^{100}\)
2A = \(2^2+2^3+2^4+...+2^{101}\)
\(2A-A=\left(2^2+2^3+...+2^{101}\right)-\left(2+2^2+...+2^{100}\right)\)
\(A=2^{101}-2\)
1.
a) Ta có : 3213 = ( 25 ) 13 = 265
6410 = ( 26 ) 10 = 260
Vì 265 > 260 nên 3213 > 6410
b) A = 2 + 2.2 + 2.2.2 + 2.2.2.2 + ... + 2.2.2.2.2...2 ( 100 số 2 )
A = 2 . ( 1 + 2 + 2.2 + 2.2.2 + ... + 2.2.2.2...2 )
A = 2. ( 1 + 2 + 22 + 23 + ... + 299 )
gọi B là biểu thức trong ngoặc
Lại có : B = 1 + 2 + 22 + 23 + ... + 299
2B = 2 + 22 + 23 + 24 + ... + 2100
2B - B = ( 2 + 22 + 23 + 24 + ... + 2100 ) - ( 1 + 2 + 22 + 23 + ... + 299 )
B = 2100 - 1
\(\Rightarrow\)A = 2 . ( 2100 - 1 )
\(\Rightarrow\)A = 2101 - 2