Cho các số a,b,c thực dương thỏa mãn : 2ab + 6bc + 2ac = 7abc
Tìm GTNN của C = \(\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng Bat đẳng thức C.B.S dạng Angel
Dấu bằng xảy ra khi a=2;b=1;c=1
\(2ab+6bc+2ac=7abc\Rightarrow\dfrac{6}{a}+\dfrac{2}{b}+\dfrac{2}{c}=7\)
Đặt \(\left(\dfrac{2}{a};\dfrac{1}{b};\dfrac{1}{c}\right)=\left(x;y;z\right)\Rightarrow3x+2y+2z=7\)
\(C=\dfrac{4}{\dfrac{2}{a}+\dfrac{1}{b}}+\dfrac{9}{\dfrac{4}{a}+\dfrac{1}{c}}+\dfrac{4}{\dfrac{1}{b}+\dfrac{1}{c}}=\dfrac{4}{x+y}+\dfrac{9}{2x+z}+\dfrac{4}{y+z}\)
\(C\ge\dfrac{\left(2+3+2\right)^2}{x+y+2x+z+y+z}=\dfrac{49}{7}=7\)
Dấu "=" xảy ra khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(2;1;1\right)\)
1 .
Từ gt : \(2ab+6bc+2ac=7abc\)và \(a,b,c>0\)
Chia cả hai vế cho abc > 0
\(\Rightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt \(x=\frac{1}{a},y=\frac{1}{b},z=\frac{1}{c}\Rightarrow\hept{\begin{cases}x,y,z>0\\2z+6x+2y=7\end{cases}}\)
Khi đó : \(C=\frac{4ab}{a+2b}+\frac{9ac}{a+4c}+\frac{4bc}{b+c}\)
\(=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
\(\Rightarrow C=\frac{4}{2x+y}+2x+y+\frac{9}{4x+z}+4x+z+\frac{4}{y+z}+y+z\)\(-\left(2x+y+4x+z+y+z\right)\)
\(=\left(\frac{2}{\sqrt{x+2y}}-\sqrt{x+2y}\right)^2+\left(\frac{3}{\sqrt{4x+z}}-\sqrt{4x+z}\right)^2\)\(+\left(\frac{2}{\sqrt{y+z}}-\sqrt{y+z}\right)^2+17\ge17\)
Khi \(x=\frac{1}{2},y=z=1\)thì \(C=17\)
Vậy GTNN của C là 17 khi a =2; b =1; c = 1
2 .
Áp dụng bất đẳng thức Cauchy ta có :\(1+b^2\ge2b\)nên
\(\frac{a+1}{1+b^2}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\)
\(\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}=a+1-\frac{ab+b}{2}\)
\(\Leftrightarrow\frac{a+1}{1+b^2}\ge a+1-\frac{ab+b}{2}\left(1\right)\)
Tương tự ta có:
\(\frac{b+1}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\)
\(\frac{c+1}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\)
Cộng vế theo vế (1), (2) và (3) ta được:
\(\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3+\frac{a+b+c-ab-bc-ca}{2}\left(^∗\right)\)
Mặt khác : \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2=9\)
\(\Rightarrow\frac{a+b+c-ab-bc-ca}{2}\ge0\)
Nên \(\left(^∗\right)\) \(\Leftrightarrow\frac{a+1}{1+b^2}+\frac{b+1}{1+c^2}+\frac{c+1}{1+a^2}\ge3\left(đpcm\right)\)
Dấu " = " xảy ra khi và chỉ khi \(a=b=c=1\)
Chúc bạn học tốt !!!
Ta có:
\(2ab+6bc+2ca=7abc\)
Chia cả hai vế của phương trình trên cho \(abc>0\), ta được:
\(\frac{6}{a}+\frac{2}{b}+\frac{2}{c}=7\)
Đặt \(x=\frac{2}{a};\) \(y=\frac{1}{b};\) và \(z=\frac{1}{c}\) \(\Rightarrow\) \(\hept{\begin{cases}x,y,z\in Z_+\\3x+2y+2z=7\end{cases}}\)
Khi đó, ta biểu diễn biểu thức \(C\) dưới dạng ba biến \(x,y,z\) như sau:
\(C=\frac{4ab}{a+2b}+\frac{9ca}{a+4c}+\frac{4bc}{b+c}=\frac{4}{x+y}+\frac{9}{z+2x}+\frac{4}{y+z}\)
nên \(C=\left[\frac{4}{x+y}+\left(x+y\right)\right]+\left[\frac{9}{z+2x}+\left(z+2x\right)\right]+\left[\frac{4}{y+z}+\left(y+z\right)\right]-\left(3x+2y+2z\right)\)
Áp dụng bất đẳng thức \(AM-GM\) cho từng bộ số trong ngoặc luôn dương, ta có:
\(C\ge4+6+4-7=7\) (do \(3x+2y+2z=7\) )
Dấu \("="\) xảy ra \(\Leftrightarrow\) \(\hept{\begin{cases}\frac{4}{x+y}=x+y\\\frac{9}{z+2x}=z+2x\\\frac{4}{y+z}=y+z\end{cases}}\) \(\Leftrightarrow\) \(x=y=z=1\)
Do đó, \(a=2;\) và \(y=z=1\)
Vậy, \(GTNN\) của \(C\) đạt được là \(7\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=z=1\end{cases}}\)
\(P=\frac{4}{\frac{1}{b}+\frac{2}{a}}+\frac{9}{\frac{1}{c}+\frac{4}{a}}+\frac{4}{\frac{1}{c}+\frac{1}{b}}\)
Theo Cauchy-Schwarz, ta có:
\(P\) ≥ \(\frac{49}{\frac{6}{a}+\frac{2}{b}+\frac{2}{c}}=\frac{49}{\frac{2ab+6bc+2ac}{abc}}=7\)
Do đó \(MinP:=7.\) Đẳng thức xảy ra khi
{\(\frac{2}{\frac{1}{b}+\frac{2}{a}}=\frac{3}{\frac{1}{c}+\frac{4}{a}}=\frac{2}{\frac{1}{c}+\frac{1}{b}}\)
\(2ab+6bc+2ac=7abc\)
Dễ thấy rằng \(\left(a,b,c\right)=\left(2,1,1\right)\) thỏa hệ trên.
\(2ab+6bc+2ac=7abc\Rightarrow\frac{6}{a}+\frac{2}{b}+\frac{2}{c}=7\)
\(A=\frac{4}{\frac{1}{b}+\frac{2}{a}}+\frac{9}{\frac{1}{c}+\frac{4}{a}}+\frac{4}{\frac{1}{b}+\frac{1}{c}}\ge\frac{\left(2+3+2\right)^2}{\frac{1}{b}+\frac{2}{a}+\frac{1}{c}+\frac{4}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{49}{\frac{6}{a}+\frac{2}{b}+\frac{2}{c}}=\frac{49}{7}=7\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}a=2\\b=c=1\end{matrix}\right.\)
\(C=\frac{4ab}{a+2b}+\frac{9ac}{4c+a}+\frac{4bc}{b+c}=\frac{4abc}{ac+2bc}+\frac{9abc}{4bc+ab}+\frac{4abc}{ab+ac}\)
\(\ge\frac{\left(2\sqrt{abc}+3\sqrt{abc}+2\sqrt{abc}\right)^2}{ac+2bc+4bc+ab+ab+ac}=\frac{49abc}{2ac+6bc+2ab}=7\)
Xin bổ sung cách sau, bn có thể tham khảo thêm
:\(GT\Leftrightarrow\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
Đặt \(\hept{\begin{cases}\frac{1}{c}=x\\\frac{1}{b}=y\\\frac{3}{a}=z\end{cases}}\) Ta có: \(2\left(x+y+z\right)=7\)
Suy ra \(C=\frac{4}{4y+\frac{2z}{3}}+\frac{9}{x+\frac{4z}{3}}+\frac{4}{x+y}\ge\frac{\left(2+3+2\right)^2}{2\left(x+y+z\right)}=7\) (Bdt Cauchy-Schwarz)
Dấu = khi \(\hept{\begin{cases}a=2\\b=c=1\end{cases}}\)
Ta có:
\(M=\dfrac{4ab}{a+2b}+\dfrac{9ac}{a+4c}+\dfrac{4bc}{b+c}\)
\(=\dfrac{4}{\dfrac{1}{b}+\dfrac{2}{a}}+\dfrac{9}{\dfrac{1}{c}+\dfrac{4}{a}}+\dfrac{4}{\dfrac{1}{c}+\dfrac{1}{b}}\)
\(\ge\dfrac{\left(2+3+2\right)^2}{\dfrac{1}{b}+\dfrac{2}{a}+\dfrac{1}{c}+\dfrac{4}{a}+\dfrac{1}{c}+\dfrac{1}{b}}=\dfrac{49}{\dfrac{2}{b}+\dfrac{6}{a}+\dfrac{2}{c}}=\dfrac{49}{\dfrac{2ab+6bc+2ac}{abc}}=\dfrac{49}{7}=7\)
Vậy GTNN là M = 7 khi \(\left(a,b,c\right)=\left(2,1,1\right)\)
2ab + 6bc + 2ac = 7abc => \(\frac{2}{c}+\frac{6}{a}+\frac{2}{b}=7\)
đặt \(x=\frac{1}{a};y=\frac{1}{b};z=\frac{1}{c}\) => 6x + 2y + 2z = 7; x; y; z > 0
Khi đó, C = \(\frac{4}{\frac{1}{b}+\frac{2}{a}}+\frac{9}{\frac{1}{c}+\frac{4}{a}}+\frac{4}{\frac{1}{c}+\frac{1}{b}}=\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)
AD BĐT Cauchy ta có:
\(\left(\frac{4}{2x+y}+\left(2x+y\right)\right)+\left(\frac{9}{4x+z}+\left(4x+z\right)\right)+\left(\frac{4}{y+z}+\left(y+z\right)\right)\)
\(\ge2\sqrt{4}+2.\sqrt{9}+2.\sqrt{4}=14\)
=> \(\frac{4}{2x+y}+\frac{9}{4x+z}+\frac{4}{y+z}\)+ 7 > 14 => C > 7
Dấu "=" xảy ra <=> a = 2; b = 1; c = 1
Vậy Min C = 7
2ab+6bc+2ac=7abc =>
Đặt => 6x + 2y + 2z = 7; x; y; z > 0
Khi đó C=
TA CÓ:
Dấu “=” xảy raóa=2;b=1;c=1
Vậy c=7
Xong rồi đó bạn hứa cho mik nha