GPT
\(x\sqrt{x}-7\sqrt{x}-6=0\)0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(ĐK:x\le12\)
Đặt \(\hept{\begin{cases}\sqrt[3]{24+x}=a\\\sqrt{12-x}=b\end{cases}\left(b\ge0\right)\Rightarrow}a^3+b^2=36\)
PT trở thành a+b=6
Ta có hệ phương trình \(\hept{\begin{cases}a+b=6\\a^3+b^2=36\end{cases}\Leftrightarrow}\hept{\begin{cases}b=6-a\\a^3+a^2-12a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=6-a\\a\left(a-3\right)\left(a+4\right)=0\end{cases}}\)
Đến đây đơn giản rồi nhé
\(ĐK:-5\le x\le3\)
Đặt \(\sqrt{x+5}+\sqrt{3-x}=t\ge0\Leftrightarrow t^2-8=2\sqrt{15-2x-x^2}\), PTTT:
\(t-t^2+8-2=0\\ \Leftrightarrow t^2-t-6=0\\ \Leftrightarrow t=3\left(t\ge0\right)\\ \Leftrightarrow2\sqrt{15-2x-x^2}=3^2-8=1\\ \Leftrightarrow60-8x-4x^2=1\\ \Leftrightarrow4x^2+8x-59=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+3\sqrt{7}}{2}\left(tm\right)\\x=\dfrac{-2-3\sqrt{7}}{2}\left(tm\right)\end{matrix}\right.\)
Vậy nghiệm pt là ...
Bạn tự phân tích đa thức thành nhân tử nhé!
\(1.\)
\(2x^3+x+3=0\)
\(\Leftrightarrow\) \(\left(x+1\right)\left(2x^2-2x+3\right)=0\) \(\left(1\right)\)
Vì \(2x^2-2x+3=2\left(x^2-x+1\right)+1=2\left(x-\frac{1}{2}\right)^2+\frac{1}{2}>0\) với mọi \(x\in R\)
nên từ \(\left(1\right)\) \(\Rightarrow\) \(x+1=0\) \(\Leftrightarrow\) \(x=-1\)
ĐK thánh tự làm đi
\(\sqrt{x^2-x-6}+x^2-x-6=12\)
Đặt căn ( x^2 - x - 6 ) = a
pt <=> a^2 + a = 12
=> a^2 + a - 12 = 0
=> (a + 3 )( a - 4 ) = 0
=> a = 4 ( TM)
=> x^2 - x - 6 = 16
=> x^2 - x - 22 = 0
Đến đây chắc giải đc òi
Ko bít có sai ko thông cảm nha
=> x^2 - x - 22 = 0
=>
\(x\sqrt{x}-7\sqrt{x}-6=0\)
\(\Leftrightarrow\left(x-7\right)\sqrt{x}-6=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x+1}\right)\left(\sqrt{x+2}\right)=0\)
Loại \(\sqrt{x}=-1;-2\)
\(\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Leftrightarrow x=9\)
buoc2 ra buoc 3 minh ko hieu