P=(2x-x-1)/(3x^2-4x+1)
a)Rút gọn
b)Chứng Minh Rằng với x>1thì P(x).P(-x)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: Rút gọn
a) Ta có: \(2x\left(x-5\right)-\left(x-2\right)^2-\left(x+3\right)\left(x-3\right)\)
\(=2x^2-10x-\left(x^2-4x+4\right)-\left(x^2-9\right)\)
\(=2x^2-10x-x^2+4x-4-x^2+9\)
\(=-6x+5\)
b) Ta có: \(\left(2x-3\right)^2+3-x^2+\left(4x-6\right)\left(x-3\right)\)
\(=4x^2-12x+9+3-x^2+4x^2-12x-6x+18\)
\(=7x^2-30x+30\)
Bài 2: Tìm x
a) Ta có: \(\left(x-2\right)^2-\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow x^2-4x+4-\left(x^2-9\right)=0\)
\(\Leftrightarrow x^2-4x+4-x^2+9=0\)
\(\Leftrightarrow-4x+13=0\)
\(\Leftrightarrow-4x=-13\)
hay \(x=\frac{13}{4}\)
Vậy: \(x=\frac{13}{4}\)
b) Ta có: \(\left(2x+1\right)^2+2\left(4x^2-1\right)+\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1\right)^2+2\cdot\left(2x+1\right)\cdot\left(2x-1\right)+\left(2x-1\right)^2=0\)
\(\Leftrightarrow\left(2x+1+2x-1\right)^2=0\)
\(\Leftrightarrow\left(4x\right)^2=0\)
\(\Leftrightarrow16x^2=0\)
mà 16≠0
nên \(x^2=0\)
hay x=0
Vậy: x=0
Bài 3:
Ta có: \(A=\left(3x-y\right)^2-\left(3x+y\right)^2\)
\(=\left[3x-y-\left(3x+y\right)\right]\cdot\left(3x-y+3x+y\right)\)
\(=\left(3x-y-3x-y\right)\cdot6x\)
\(=6x\cdot\left(-2y\right)=-12xy\)
Thay \(x=\frac{1}{2}\) và \(y=\frac{1}{3}\) vào biểu thức A=-12xy, ta được:
\(A=-12\cdot\frac{1}{2}\cdot\frac{1}{3}=-2\)
Vậy: -2 là giá trị của biểu thức \(A=\left(3x-y\right)^2-\left(3x+y\right)^2\) tại \(x=\frac{1}{2}\) và \(y=\frac{1}{3}\)
Bài 4: Chứng minh
a) Ta có: \(x^2-4x+5\)
\(=x^2-4x+4+1\)
\(=\left(x-2\right)^2+1\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2+1\ge1>0\forall x\)
hay \(x^2-4x+5>0\forall x\)
- Đặt lẻ câu hỏi bạn nhớ không nên đặt quá nhiều như vậy nha
Bài 1:
a)-x^2+4x-5
=-(x2-4x+5)<0 với mọi x
=>-x^2+4x-5<0 với mọi x
b)x^4+3x^2+3
\(=\left(x^2+\frac{3}{2}\right)^2+\frac{3}{4}>0\)với mọi x
=>x^4+3x^2+3>0 với mọi x
c) bn xét từng th ra
Bài 2:
a)9x^2-6x-3=0
=>3(3x2-2x-1)=0
=>3x2-2x-1=0
=>3x2+x-3x-1=0
=>x(3x+1)-(3x+1)=0
=>(x-1)(3x+1)=0
b)x^3+9x^2+27x+19=0
=>(x+1)(x2+8x+19) (dùng pp nhẩm nghiệm rồi mò ra)
c)x(x-5)(x+5)-(x+2)(x^2-2x+4)=3
=>x3-25x-x3-8=3
=>-25x-8=3
=>-25x=1
=>x=-11/25
Để mình làm full cho bạn nha :v
Câu a : ĐKXĐ : \(x\ne0\)
\(P\left(x\right)=\dfrac{2x-\sqrt{x^2}-1}{3x}=\dfrac{2x-x-1}{3x}=\dfrac{x-1}{3x}\)
Câu b : Ta có : \(P\left(x\right).P\left(-x\right)=\dfrac{x-1}{3x}.\dfrac{-\left(x-1\right)}{3x}=\dfrac{-\left(x-1\right)^2}{9x^2}\)
Vì : \(9x^2>0\) ( Do : \(x>1\) ) Và \(-\left(x-1\right)^2< 0\) ( \(x>1\) )
\(\Rightarrow\dfrac{-\left(x-1\right)^2}{9x^2}< 0\Rightarrowđpcm\)
a , ĐK \(x\ge0\)
thu gọn : ( câu b mik ko biết làm )
\(P\left(x\right)=\dfrac{2x-\sqrt{x^2}-1}{3x}=\dfrac{2x-x-1}{3x}=\dfrac{x-1}{3x}\)
a) điều kiện \(x\ne1;x\ne\dfrac{1}{3}\)
ta có : \(P=\dfrac{x-1}{3x^2-4x+1}=\dfrac{x-1}{\left(x-1\right)\left(3x-1\right)}=\dfrac{1}{3x-1}\)
b) ta có : nếu \(x>1\) \(\Rightarrow3x-1>0\) \(\Leftrightarrow\dfrac{1}{3x-1}>0\)
và khi đó \(-x< -1\Rightarrow3x-1< 0\Leftrightarrow\dfrac{1}{3x-1}< 0\)
\(\Rightarrow P\left(x\right).P\left(-x\right)< 0\) (đpcm)