K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2018

ĐK:  \(x^2+2y+1\ge0\)

Phương trình (1) tương đương:

\(4y^2-4y\sqrt{x^2+2y+1}+x^2+2y+1=x^2-2xy+y^2\)

\(\Leftrightarrow\)\(\left(2y-\sqrt{x^2+2y+1}\right)^2=\left(x-y\right)^2\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}\sqrt{x^2+2y+1}=3y-x\\\sqrt{x^2+2x+1}=x+y\end{cases}}\)

Trường hợp 1:   \(\sqrt{x^2+2x+1}=3y-x\)Bình phương 2 vế ta được:

\(\hept{\begin{cases}3y\ge x\\x^2+2y+1=9y^2-6xy+x^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}3y\ge x\\6xy=9y^2-2y-1\\xy=y^2+3y-3\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1;y=1\\x=\frac{415}{51};y=\frac{17}{3}\end{cases}}\)(t/m)

Trường hợp 2:   \(\sqrt{x^2+2y+1}=x+y\)Bình phương 2 vế ta được:

\(\hept{\begin{cases}x+y\ge0\\x^2+2y+1=x^2+2xy+y^2\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x+y\ge0\\2xy=-y^2+2y+1\\xy=y^2+3y-3\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1;y=1\left(t/m\right)\\x=\frac{41}{21};y=-\frac{7}{3}\left(L\right)\end{cases}}\)

Vậy hệ có nghiệm   \(\left(x;y\right)=\left(1;1\right);\left(\frac{415}{51};\frac{17}{3}\right)\)

7 tháng 1 2019

i will chịu

21 tháng 2 2019

Câu 1: ĐK: x khác -1/2, y khác -2

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=t\) Từ phương trình thứ nhất ta có:

\(t+\frac{1}{t}=2\Leftrightarrow t^2-2t+1=0\Leftrightarrow t=1\)

=> \(\sqrt[3]{\frac{2x+1}{y+2}}=1\Leftrightarrow2x+1=y+2\Leftrightarrow2x-y=1\)

Vậy nên ta có hệ phương trình cơ bản: \(\hept{\begin{cases}2x-y=1\\4x+3y=7\end{cases}}\)Em làm tiếp nhé>

21 tháng 2 2019

\(1,ĐKXĐ:\hept{\begin{cases}y\ne-2\\x\ne-\frac{1}{2}\end{cases}}\)

Đặt \(\sqrt[3]{\frac{2x+1}{y+2}}=a\left(a\ne0\right)\)

\(Pt\left(1\right)\Leftrightarrow a+\frac{1}{a}=2\)

             \(\Leftrightarrow a^2+1=2a\)

             \(\Leftrightarrow\left(a-1\right)^2=0\)

            \(\Leftrightarrow a=1\)

           \(\Leftrightarrow\sqrt[3]{\frac{2x+1}{y+2}}=1\)

13 tháng 5 2018

thay \(x=-\frac{y-1}{2}\) vào pt(1) nhé biếng giải quá :(

13 tháng 5 2018

Từ \(\left(6x+4y-1\right)\sqrt{x+y+1}=\left(2x+2y+1\right)\sqrt{3x+21y}\)

\(\Leftrightarrow\left(6x+4y-1\right)^2\left(x+y+1\right)=\left(2x+2y+1\right)^2\left(3x+2y\right)\)

\(\Leftrightarrow\left(2x+y-1\right)\left(12x^2+20xy+12x+8y^2+8y-1\right)=0\)

\(\Leftrightarrow x=\frac{-y+1}{2}\) thay vào pt(1)

\(\frac{y^2+2y-35}{4}=0\Leftrightarrow\left(y-5\right)\left(y+7\right)=0\Leftrightarrow\orbr{\begin{cases}y=5\\y=-7\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\Leftrightarrow x=-2\\y=-7\Leftrightarrow x=4\end{cases}}\)

4 tháng 3 2020

a) \(\hept{\begin{cases}\sqrt{2x}-\sqrt{3y}=1\left(1\right)\\x+\sqrt{3y}=\sqrt{2}\left(2\right)\end{cases}}\) ( ĐK \(x,y\ge0\) )

Từ (1) và (2)\(\Leftrightarrow\sqrt{2x}+x=1+\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+\sqrt{2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}-1=0\\\sqrt{x}+\sqrt{2}+1=0\end{cases}}\)

\(\Leftrightarrow x=1\) ( Do \(x\ge0\) )

Thay \(x=1\) vào hệ (1) ta có :

\(\sqrt{2}-\sqrt{3y}=1\)

\(\Leftrightarrow\sqrt{3y}=\sqrt{2}-1\)

\(\Leftrightarrow y=\frac{3-2\sqrt{2}}{3}\) ( thỏa mãn )

P/s : E chưa học cái này nên không chắc lắm ...

4 tháng 3 2020

\(b,\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\\left(\sqrt{2}-1\right)x+y=\sqrt{2}-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(\sqrt{2}-1\right)x-y=\sqrt{2}\\2y=-1\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}y=-\frac{1}{2}\\x=\frac{\sqrt{2}-0.5}{\sqrt{2}-1}=\frac{3+\sqrt{2}}{2}\end{cases}}\)

Dùng cái đầu đi ạ