Cho \(\Delta ABC\) , OB=OC . Gọi M,N là các điểm trên AB,AC sao cho \(\widehat{MON=60^0}\).C/m:
a) \(\Delta OBM\infty\Delta NCO\)
b) \(\Delta OBM\infty\Delta NOM\) sau đó => NO là đường phân giác \(\widehat{BMN}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Tam giác OAM và tam giác OBM có:
OA=OB(gt)
Góc MOA=góc MOB(Oz là tia pg của góc xOy)
OM là cạnh chung
Do đó tam giác OAM=tam giác OBM(c.g.c)
b)Ta có tam giác OAM=tam giác OBM(cmt)
=>Góc OAM=góc OBM và AM=BM
Tam giác AMC và tam giác BMD có:
AM=BM(gt)
góc CAM=góc DBM(cmt)
AC=DB(gt)
=>tam giác AMC=tam giác BMD(c.g.c)
=>góc AMC=góc BMD(2 góc tương ứng)
c)mik chưa nghĩ ra,xin lỗi nha
Ta có : \(\widehat{BOM}\)+ \(\widehat{MON}\)+ \(\widehat{NOC}\)= \(180^0\) (kề bù)
\(\widehat{BOM}\)+ \(60^0\) + \(\widehat{NOC}\)= \(180^0\)
\(\widehat{BOM}\)+ \(\widehat{NOC}\) = \(120^0\) \(\left(1\right)\)
\(X\text{ét}\)\(\Delta NOC\)có :
\(\widehat{NOC}\)+ \(\widehat{ONC}\) + \(\widehat{NCO}\)= \(180^0\)
\(\widehat{NOC}\) + \(\widehat{ONC}\) + \(60^0\) = \(180^0\)
\(\widehat{NOC}\) + \(\widehat{ONC}\) = \(120^0\) \(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)=) \(\widehat{BOM}\)= \(\widehat{ONC}\)
\(X\text{ét}\)\(\Delta OBM\)Và \(\Delta NCO\)có :
\(\widehat{MBO}\)= \(\widehat{OCN}\) ( cùng bằng 600 )
\(\widehat{BOM}\)= \(\widehat{ONC}\) ( chứng minh trên )
=) \(\Delta OBM\)đồng dạng với \(\Delta NCO\)( g-g )
Do \(\Delta OBM\) đồng dạng với \(\Delta NCO\)
=) \(\frac{BM}{CO}=\frac{OM}{ON}\)
Mà BO = OC
=) \(\frac{BM}{BO}=\frac{OM}{ON}\)
\(X\text{ét}\)\(\Delta OBM\) Và \(\Delta NOM\) có :
\(\frac{BM}{BO}=\frac{OM}{ON}\)
\(\widehat{B}\)\(=\)\(\widehat{MON}\) (cùng bằng \(60^0\))
=) \(\Delta OBM\)đồng dạng với \(\Delta NOM\) ( c - g - c )
Answer:
a) Ta có:
Góc NOC = 180 độ - góc MON - góc MOB
Góc NOC = 180 độ - góc MBO - góc MOB
Góc NOC = góc BMO
Xét tam giác MBO và tam giác OCN
Góc MBO = góc OCN = 60 độ
Góc BMO = góc NOC
=> Tam giác MBO ~ tam giác OCN (g-g)
=> \(\frac{MO}{ON}=\frac{BO}{CN}=\frac{MB}{OC}\)
b) Do O là trung điểm BC => OC = BO
\(\Rightarrow\frac{MO}{ON}=\frac{MB}{OB}\)
\(\Rightarrow\frac{MO}{MB}=\frac{ON}{OB}\)
\(\Rightarrow\frac{OB}{NO}=\frac{MB}{MO}\)
Xét tam giác OBM và tam giác NOM
Góc OBM = góc NOM = 60 độ
\(\frac{MB}{MO}=\frac{OB}{NO}\)
=> Tam giác OBM ~ tam giác NOM (c-g-c)
=> Góc OMB = góc OMN
=> MO là tia phân giác góc BMN
a) Xét \(\Delta OAN\) và \(\Delta OBM \) có:
OA=OB (gt)
\(\widehat{O}\) chung
OM=ON (gt)
=>\(\Delta OAN = \Delta OBM\)(c.g.c)
b) Do \(\Delta OAN = \Delta OBM\) nên AN=BM ( 2 cạnh tương ứng); \(\widehat {OAN} = \widehat {OBM}\)( 2 góc tương ứng) =>\(\widehat {NAM} = \widehat {MBN}\)
Do OA + AM = OM; OB + BN = ON
Mà OA = OB, OM =ON
=> AM=BN
Xét \(\Delta AMN\) và \(\Delta BNM\) có:
AN=BM (cmt)
\(\widehat {NAM} = \widehat {MBN}\) (cmt)
AM=BN (cmt)
=>\(\Delta AMN = \Delta BNM\)(c.g.c)