Tìm 2 số tự nhiên x,y biết:
a,\(2^x+124=5^y\) b,\(35^x+9=2.5^y\) c,\(x^{2018}+\left(x+y-2017\right)^{2020}=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x+124=5y(1)
Ta có:
2^x+124 là số chẵn nếu x lớn hơn hoặc bằng 1
2^x+124 là số lẻ nếu x=0,mặt khác: 5^y là 1 số lẻ nên suy ra:
=>x=0
Từ (1) =>1+124=5^y
=>5^y=125
=>5^y=5^3
=>y=3
Kết luận : x=0 và y=3
Bài 10:
a: 2x-3 là bội của x+1
=>\(2x-3⋮x+1\)
=>\(2x+2-5⋮x+1\)
=>\(-5⋮x+1\)
=>\(x+1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{0;-2;4;-6\right\}\)
b: x-2 là ước của 3x-2
=>\(3x-2⋮x-2\)
=>\(3x-6+4⋮x-2\)
=>\(4⋮x-2\)
=>\(x-2\inƯ\left(4\right)\)
=>\(x-2\in\left\{1;-1;2;-2;4;-4\right\}\)
=>\(x\in\left\{3;1;4;0;6;-2\right\}\)
Bài 14:
a: \(4n-5⋮2n-1\)
=>\(4n-2-3⋮2n-1\)
=>\(-3⋮2n-1\)
=>\(2n-1\inƯ\left(-3\right)\)
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(2n\in\left\{2;0;4;-2\right\}\)
=>\(n\in\left\{1;0;2;-1\right\}\)
mà n>=0
nên \(n\in\left\{1;0;2\right\}\)
b: \(n^2+3n+1⋮n+1\)
=>\(n^2+n+2n+2-1⋮n+1\)
=>\(n\left(n+1\right)+2\left(n+1\right)-1⋮n+1\)
=>\(-1⋮n+1\)
=>\(n+1\in\left\{1;-1\right\}\)
=>\(n\in\left\{0;-2\right\}\)
mà n là số tự nhiên
nên n=0
\(1,\\ b,\Leftrightarrow\left(x^2+4x+4\right)+\left(y-1\right)^2=25\\ \Leftrightarrow\left(x+2\right)^2+\left(y-1\right)^2=25\)
Vậy pt vô nghiệm do 25 ko phải tổng 2 số chính phương
\(2,\\ a,\Leftrightarrow x^2-\left(y^2-6y+9\right)=47\\ \Leftrightarrow x^2-\left(y-3\right)^2=47\)
Mà 47 ko phải hiệu 2 số chính phương nên pt vô nghiệm
\(b,\Leftrightarrow\left(x-2\right)^2+\left(3y-1\right)^2=16\)
Mà 16 ko phải tổng 2 số chính phương nên pt vô nghiệm
2b,
Vì 16 ko đồng dư với 1 (mod 4) nên 16 ko phải là tổng 2 scp
Định lý Fermat về tổng của hai số chính phương – Wikipedia tiếng Việt
vô đây đọc nhé
a) 2009 - |x - 2009| = x
=> |x - 2009| = 2009 - x (1)
ĐK : \(2009-x\ge0\Leftrightarrow x\le2009\)
Ta có (1) <=> \(\orbr{\begin{cases}x-2009=2009\\x-2009=-2009\end{cases}\Rightarrow\orbr{\begin{cases}x=0\left(tm\right)\\x=2009\left(\text{loại}\right)\end{cases}}}\)
Vậy x = 0
b) Ta có : \(\hept{\begin{cases}\left(2x-1\right)^{2018}\ge0\forall x\\\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\\\left|x+y-z\right|\ge0\forall x;y;z\end{cases}}\Rightarrow\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2020}+\left|x+y-z\right|\ge0\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=x+y\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}}\)
\(\text{b)}\)
\(\text{Ta có: }\text{ }\left(2x-1\right)^{2018}\ge0\)
\(\left(y-\frac{2}{5}\right)^{2020}\ge0\)
\(\text{ và}\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)=0\)
\(\text{Dấu "=" xảy ra khi:}\)
\(\left(2x-1\right)^{2018}=0\)
\(\Rightarrow2x-1\) \(=0\)
\(\Rightarrow2x\) \(=1\)
\(\Rightarrow x\) \(=\frac{1}{2}\)
\(\text{ và:}\left(y-\frac{2}{5}\right)^{2020}=0\)
\(\Rightarrow y-\frac{2}{5}\) \(=0\)
\(\Rightarrow y\) \(=\frac{2}{5}\)
\(\text{Nhớ k cho mình với nghe}\) :33