B\(\frac{2a+11}{a+3}\)
Tìm a để B thuộc số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 10 ⋮ 3a+1 => 3a+1 ∈ Ư(10) => 3a+1 ∈ {1;2;5;10} => a ∈ { 0 ; 1 3 ; 4 3 ; 3 }. Vì a ∈ N, a ∈ {0;3}
b, a+6 ⋮ a+1 => a+1+5 ⋮ a+1 => 5 ⋮ a+1 => a+1 ∈ Ư(5) => a+1 ∈ {1;5} => a ∈ {0;4}
c, 3a+7 ⋮ 2a+3 => 2.(3a+7) - 3(2a+3) ⋮ 2a+3 => 5 ⋮ 2a+3 => 2a+3 ∈ Ư(5)
=> 2a+3 ∈ {1;5} => a = 1
d, 6a+11 ⋮ 2a+3 => 3.(2a+3)+2 ⋮ 2a+3 => 2 ⋮ 2a+3 => 2a+3 ∈ Ư(2)
=> 2a+3 ∈ {1;2} => a ∈ ∅
tìm n nhỏ nhất nha
\(\frac{7}{n+9};\frac{8}{n+10};....;\frac{11}{n+13}\) tối giản
\(\Leftrightarrow\frac{n+9}{7};\frac{n+10}{8};\frac{n+11}{9};....;\frac{n+13}{11}\)tối giản
\(\Leftrightarrow\frac{n+2}{7};\frac{n+2}{8};......;\frac{n+2}{11}\)tối giản
nên n+2 là số nhỏ nhất nguyên tố cùng nhau với 7;8;...;11
nên: n+2 là số nguyên tố lớn nhất lớn hơn 11
=> n+2=13=> n=11
a) Ta có : \(\frac{7}{n+9}=\frac{7}{\left(n+2\right)+7}\).
Để \(\frac{7}{\left(n+2\right)+7}\)tối giản thì 7 và ( n +2 ) nguyên tố cùng nhau
Tương tự ta có : 8 và (n+2) NTCN
9 và(n+2) NTCN
10 và (n+2) NTCN
11 và (n+2) NTCN
Vậy để \(\frac{7}{n+9};\frac{8}{n+10};...\)tối giản thì : n + 2 phải NTCN với 7;8;9;10;11
Mà n nhỏ nhất nên n+2 là SNT nhỏ nhất > 1
Vậy n + 2= 13 => n = 11
lại có đưa xem gia đình là số 1
2a+11\(⋮\)a+3