K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2018

\(a.4x^3-8x^2+4xy^3=4x\left(x^2-8x+y^3\right)\)

\(b.x^2+2xy+y^2-36=\left(x+y\right)^2-36=\left(x+y-6\right)\left(x+y+6\right)\) \(c.x^2-2xy+y^2-25=\left(x-y\right)^2-25=\left(x-y-5\right)\left(x-y+5\right)\) \(d.x^2-5x+2xy-5y+y^2=\left(x+y\right)^2-5\left(x+y\right)=\left(x+y\right)\left(x+y-5\right)\) \(e.49+2xy-x^2-y^2=-\left(x^2-2xy+y^2-49\right)=-\left[\left(x-y\right)^2-49\right]=-\left(x-y-7\right)\left(x-y+7\right)\) \(f.3x^2-6x+3-3y^2=3\left(x^2-2x-y^2+1\right)\)

\(g.2x^3+4x^2+2x=2x\left(x^2+2x+1\right)=2x\left(x+1\right)\left(x+1\right)\)

\(h,\) giống câu f.

\(i.x^3-2x^2y+xy^2-64x=x\left(x^2-2xy+y^2-64\right)=x\left[\left(x-y\right)^2-64\right]=x\left(x-y-8\right)\left(x-y+8\right)\) \(k.3x+3y-x^2-2xy-y^2=3\left(x+y\right)-\left(x+y\right)^2=\left(x+y\right)\left(3-x-y\right)\)

22 tháng 8 2021

x4 - 4x3 - 8x2 + 8x 

 = x(x3 - 4x2 - 8x + 8) 

= x[x3 + 8 - 4x(x + 2)] 

= x[(x + 2)(x2 - 2x + 4) - 4x(x + 2)] 

= x(x + 2)(x2 - 6x + 4)

= x(x + 2)(x2 - 6x + 9 - 5) 

 = \(x\left(x+2\right)\left[\left(x-3\right)^2-5\right]=x\left(x+2\right)\left(x-3+\sqrt{5}\right)\left(x-3-\sqrt{5}\right)\)

22 tháng 8 2021

\(x^4-4x^3-8x^2+8x\)

\(=x\left(x^3-4x^2-8x+8\right)\)

\(=x\left(x^3-6x^2+2x^2+4x-12x+8\right)\)

\(=x\left[\left(x^3-6x^2+4x\right)+\left(2x^2-12x+8\right)\right]\)

\(=x\left[x\left(x^2-6x+4\right)+2\left(x^2-6x+4\right)\right]\)

\(=x\left(x^2-6x+4\right)\left(x+2\right)\)

\(=x\left[\left(x-3\right)^2-\left(\sqrt{5}\right)^2\right]\left(x+2\right)\)

\(=x\left(x-3-\sqrt{5}\right)\left(x-3+\sqrt{5}\right)\left(x+2\right)\)

24 tháng 9 2021

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

19 tháng 10 2017

\(4x^3+8x^2y+4xy^2-16\)

\(4x\left(x^2+2xy+y^2\right)-4^2\)

\(4x\left(x+y\right)^2-4^2\)

\(4x\left(x+y+4\right)\left(x+y-4\right)\)

6 tháng 2 2016

mik bấm máy tính nó ra mỗi nghiệm là -2 thui bạn cứ tách từ từ nha bạn

 

7 tháng 2 2016

pn có thể trình bày rõ hơn k

mk k hỉu

25 tháng 8 2021

bạn viết lại đề đi, có số mũ, xuống dòng chứ thế này ai mà giải được

a) Ta có: \(8x+4x^2-12xy\)

\(=4x\left(2+x-3y\right)\)

b) Ta có: \(5x^3-10x^2+5x\)

\(=5x\left(x^2-2x+1\right)\)

\(=5x\left(x-1\right)^2\)

c) Ta có: \(x^3+x^2y-xy^2-y^3\)

\(=x^2\left(x+y\right)-y^2\left(x+y\right)\)

\(=\left(x+y\right)\left(x^2-y^2\right)\)

\(=\left(x-y\right)\left(x+y\right)^2\)

d) Ta có: \(x^2-8x-9\)

\(=x^2-9x+x-9\)

\(=\left(x-9\right)\left(x+1\right)\)

21 tháng 7 2021

a. `8x+4x^2-12xy=4x(2+x-3y)`

b) `5x^3-10x^2+5x=5x(x^2-2x+1)`

c) `x^3+x^2y-xy^2-y^3=x^2(x+y)-y^2(x+y)=(x+y)(x^2-y^2)=(x+y)^2 (x-y)`

d) `x^2-8x-9=(x^2-2.x.4+4^2)-25=(x-4)^2-5^2=(x+1)(x-9)`

\(=y\left(4x^2-4xy+y^2-49\right)\)

\(=y\left[\left(2x-y\right)^2-49\right]\)

\(=y\left(2x-y-7\right)\left(2x-y+7\right)\)

19 tháng 8 2019

a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)

\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)

\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)

c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)

\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)

19 tháng 8 2019

b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)

\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)

\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)