Cho a =\(\frac{1-\sqrt{2}}{2}\). Tính giá trị biểu thức \(\sqrt{16a^8-51a}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu b : Ta có :
\(\left(a+b\right)^2+\dfrac{a+b}{2}=\left(a+b\right)\left(a+b+\dfrac{1}{2}\right)=\left(a+b\right)\left[\left(a+\dfrac{1}{4}\right)+\left(b+\dfrac{1}{4}\right)\right]\)
Áp dụng BĐT Cô - Si ta có :
\(\left\{{}\begin{matrix}a+b\ge2\sqrt{ab}\\a+\dfrac{1}{4}\ge\sqrt{a}\\b+\dfrac{1}{4}\ge\sqrt{b}\end{matrix}\right.\)
\(\Rightarrow VT\ge2\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)=2a\sqrt{b}+2b\sqrt{a}\) ( đpcm )
Dấu \("="\) xảy ra khi \(a=b=-\dfrac{1}{4}\)
Ta có:
\(16a^8-51a=\left(16a^8-16a^7-4a^6\right)+\left(16a^7-16a^6-4a^5\right)+\left(20a^6-20a^5-5a^4\right)+\left(24a^5-24a^4-6a^3\right)+\left(29a^4-29a^3-\frac{29}{4}a^2\right)+\left(35a^3-35a^2-\frac{35}{4}a\right)+\left(\frac{169}{4}a^2-\frac{169}{4}a-\frac{169}{16}\right)+\frac{169}{16}\)
\(=\frac{169}{16}\)
\(\sqrt{16a^8-51a}=\sqrt{\frac{169}{16}}=3,25>\pi\)
\(a=\frac{1-\sqrt{2}}{2}\)
\(\Leftrightarrow1-2a=\sqrt{2}\)
\(\Leftrightarrow4a^2-4a-1=0\)
\(\Rightarrow\sqrt{16a^8-51a}=\sqrt{\left(16a^8-16a^7-4a^6\right)+\left(-16a^7+16a^6+4a^5\right)+...+}\)
Làm nốt
Ta co:
\(a^2=\frac{1}{4}\left(\sqrt{2}+\frac{1}{8}\right)-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{32}\)
\(=\frac{\sqrt{2}}{4}-\frac{\sqrt{2}}{8}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{1}{16}\)
\(\Rightarrow\sqrt{8}a^2=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}\)
Ta lại co:
\(8a+\sqrt{2}=4\sqrt{\sqrt{2}+\frac{1}{8}}\)
\(\Leftrightarrow64a^2+16\sqrt{2}a+2=16\sqrt{2}+2\)
\(\Leftrightarrow2\sqrt{2}a^2=1-a\)
\(\Leftrightarrow8a^4=a^2-2a+1\)
Từ đề bài co:
\(\sqrt{8}M=\sqrt{8}a^2+\sqrt{8a^4+8a+8}\)
\(=\sqrt{8}a^2+\sqrt{a^2-2a+1+8a+8}\)
\(=\sqrt{8}a^2+a+3\)
\(=1-\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}+\frac{\sqrt{8}}{16}+\frac{1}{2}\sqrt{\sqrt{2}+\frac{1}{8}}-\frac{\sqrt{2}}{8}+3\)
\(=4\)
\(\Rightarrow M=\sqrt{2}\)
ĐK: \(x-9\ne0\Rightarrow x\ne9\)
\(\sqrt{x}\ge0\Rightarrow x\ge0\)
\(x+\sqrt{x}-6\ne0\Rightarrow x+3\sqrt{x}-2\sqrt{x}-6\ne0\Rightarrow\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)\ne0\)
\(\Rightarrow\sqrt{x}-2\ne0\Rightarrow\sqrt{x}\ne2\Rightarrow x\ne4\)
ĐKXĐ: \(x\ge0;x\ne4;x\ne9\)
\(A=\left(\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{1}{x+\sqrt{x}-6}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\frac{\sqrt{x}-3}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\left(\frac{1+\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}:\frac{1+x-9-x+4\sqrt{x}-4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}+3}.\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{4\sqrt{x}-12}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{4\left(\sqrt{x}-3\right)}\)
2, Với \(x=\frac{25}{16}\)\(\Rightarrow\sqrt{x}=\sqrt{\frac{25}{16}}=\frac{5}{4}\)
\(A=\frac{\frac{5}{4}\left(\frac{5}{4}-2\right)}{4\left(\frac{5}{4}-3\right)}=\frac{5}{4}.\left(-\frac{3}{4}\right):4\left(-\frac{7}{4}\right)=-\frac{15}{16}:-7=\frac{15}{112}\)
\(\orbr{\begin{cases}\orbr{\begin{cases}\\\end{cases}}\\\end{cases}}\)\(\orbr{\begin{cases}\orbr{\begin{cases}\sqrt{x}-2< 0\\\sqrt{x}-3>0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}< 2\\\sqrt{x}>3\end{cases}}\Rightarrow\orbr{\begin{cases}x< 4\\x>9\end{cases}}}\\\orbr{\begin{cases}\sqrt{x}-2>0\\\sqrt{x}-3< 0\end{cases}\Rightarrow\orbr{\begin{cases}\sqrt{x}>2\\\sqrt{x}< 3\end{cases}\Rightarrow\orbr{\begin{cases}x>4\\x< 9\end{cases}}}}\end{cases}}\)