K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2017

a) a + b = c => b = c - a 

Hoặc : b bằng số hữu tỉ cộng với số vô tỉ suy ra b là số vô tỉ 

Vậy b là số vô tỉ 

b) Giả sử b = 0 thì ab = 0 => b là số hữu tỉ 

Nếu b khác 0 và cho ab = c => b = c : a 

Hoặc : b bằng số hữu tỉ chia cho số vô tỉ suy ra b là số vô tỉ 

Vậy b là số hữu tỉ nếu b = 0 ; b là số vô tỉ nếu b khác 0 

18 tháng 10 2017
Sao lúc nãy tk mik sai ?
4 tháng 2 2020

a) Giả sử \(\sqrt{a}\notin I\Rightarrow\sqrt{a}\in Q\)

=> \(\sqrt{a}=\frac{m}{n}\)(m,n) = 1 ; m,n \(\in\)N

Vì a không là số chính phương

=> \(\sqrt{a}\notin N\)

=>\(\frac{m}{n}\notin N\)

=> n > 1

Vì \(\sqrt{a}=\frac{m}{n}\Rightarrow a=\frac{m^2}{n^2}\Rightarrow m^2=an^2\)

Vì n > 1 => Giả sử n có ước nguyên tố là p => n\(⋮\)p

Mà m2 = an2 => m\(⋮\)p

=> m,n có ước chung là p trái với gt m,n nguyên tố cn

=> Giả sử là sai

=> \(\sqrt{a}\in I\)

Vậy_

b) AD câu a có 2 \(\in\)N, 2 k phải SCP => \(\sqrt{2}\in I\)

+ giả sử 1 - \(\sqrt{2}\notin I\)=> 1 - \(\sqrt{2}\in Q\)

Mà \(\sqrt{2}\in I\)=> 1-\(\sqrt{2}\in I\)( trái với gt)

=> 1-\(\sqrt{2}\in I\)

21 tháng 8 2021

\(A=\sqrt{\dfrac{b^2\left(a-b\right)^2+a^2\left(a-b\right)^2+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)

\(=\sqrt{\dfrac{b^2\left(a^2-2ab+b^2\right)+a^2\left(a^2-2ab+b^2\right)+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)

\(=\sqrt{\dfrac{b^4+a^4-2ab^3-2a^3b+3a^2b^2}{a^2b^2\left(a-b\right)^2}}=\sqrt{\dfrac{\left(b^2+a^2\right)^2-2ab\left(a^2+b^2\right)+a^2b^2}{a^2b^2\left(a-b\right)^2}}\)

\(=\sqrt{\dfrac{\left(b^2+a^2-ab\right)}{a^2b^2\left(a-b\right)^2}}=\left|\dfrac{a^2+b^2-ab}{ab\left(a-b\right)}\right|\)

Do a,b là số hữu tỉ\(\Rightarrow\)\(\left|\dfrac{a^2+b^2-ab}{ab\left(a-b\right)}\right|\) là số hữu tỉ hay A là số hữu tỉ

1 tháng 8 2018

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}\right)\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}\)

\(=\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)    (do a+b+c = 0)

=>  \(B=\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}=\sqrt{ \left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

=>   đpcm

20 tháng 9 2019

a) Ta có: \(\frac{\left(x+y\right)+\left(x-y\right)}{2}=x\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay x là số hữu tỉ)

 \(\frac{\left(x+y\right)-\left(x-y\right)}{2}=y\)( x + y và x - y là số hữu tỉ nên \(\frac{\left(x+y\right)+\left(x-y\right)}{2}\)là số hữu tỉ hay y là số hữu tỉ)

b) x và y có thể là số vô tỉ

VD: \(x=\sqrt{6};y=-\sqrt{6}\)

\(\Rightarrow\hept{\begin{cases}x+y=0\\\frac{x}{y}=-1\end{cases}}\)(đều là số hữu tỉ)

20 tháng 9 2019

a, \(x=\frac{\left(x+y\right)+\left(x-y\right)}{2}\)         ;         \(y=\frac{\left(x+y\right)-\left(x-y\right)}{2}\)

tổng, hiệu của 2 số hữu tỉ là một số hữu tỉ. Thương của một số hữu tỉ với một số hữu tỉ khác 0 cùng là một số hữu tỉ. 

Vậy x,y đều là các số hữu tỉ không thể là số vô tỉ.

b, x và y có thể là số vô tỉ . Chẳng hạn \(x=-\sqrt{2}\) ; \(y=\sqrt{2}\) thì \(x+y=-\sqrt{2}+\sqrt{2}=0\)

\(\frac{x}{y}=\frac{-\sqrt{2}}{\sqrt{2}}=-1\)