Rút gọn biểu thức sau
A=\(\dfrac{4+\sqrt{15}}{4-\sqrt{15}}\)+\(\dfrac{4-\sqrt{15}}{4+\sqrt{15}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(C=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
Ta có: \(B=\dfrac{\sqrt{2-\sqrt{3}}+\sqrt{4-\sqrt{15}}+\sqrt{10}}{\sqrt{23-3\sqrt{5}}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{8-2\sqrt{15}}+2\sqrt{5}}{3\sqrt{5}-1}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{5}-\sqrt{3}+2\sqrt{5}}{3\sqrt{5}-1}\)
=1
\(A=\left(1-\dfrac{4}{\sqrt{x}+1}+\dfrac{1}{\left(\sqrt{x}-1\right)\cdot\left(\sqrt{x}+1\right)}\right)\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{x-1-4\left(\sqrt{x}-1\right)+1}{x-1}\cdot\dfrac{x-1}{x-2\sqrt{x}}\)
\(=\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(A=\left(1-\dfrac{4}{\sqrt{x}+1}+\dfrac{1}{x-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\) (ĐK: \(x>0;x\ne1;x\ne4\))
\(A=\left[1-\dfrac{4}{\sqrt{x}+1}+\dfrac{1}{\left(\sqrt{x}\right)^2-1^2}\right]:\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}\right)^2-1^2}\)
\(A=\left[\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{4\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]:\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(A=\dfrac{x-1-4\sqrt{x}+4+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{x-4\sqrt{x}+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
a) \(E=2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}.\)
\(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}-12\sqrt{5\sqrt{3}}}\)
\(=0\)
b) \(F=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}.\)
Vì \(=\frac{5}{12}-\frac{1}{\sqrt{6}}=\frac{5-2\sqrt{6}}{12}=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}\)
\(\frac{1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}=\frac{2\sqrt{3}+\sqrt{2}}{6}\)
Nên \(F=\frac{2\sqrt{3}+\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\frac{3\sqrt{3}}{6}=\frac{\sqrt{3}}{2}\)
\(M=\dfrac{8\left(\sqrt{5}+\sqrt{3}\right)}{2}-\dfrac{7\left(2+\sqrt{3}\right)}{4-3}+\dfrac{4\left(\sqrt{2}+1\right)}{2-1}+\dfrac{\sqrt{15}\left(\sqrt{3}-1\right)}{\sqrt{15}}\)
\(=4\left(\sqrt{5}+\sqrt{3}\right)-14-7\sqrt{3}+4\sqrt{2}+4+\sqrt{3}-1\)
\(=4\sqrt{5}+4\sqrt{3}-6\sqrt{3}+4\sqrt{2}-11\)
\(=4\sqrt{5}-2\sqrt{3}+4\sqrt{2}-11\)
\(M=\dfrac{8\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\dfrac{7\left(\sqrt{3}+2\right)}{3-4}+\dfrac{4\left(\sqrt{2}+1\right)}{2-1}+\dfrac{\sqrt{15}\left(\sqrt{3}-1\right)}{\sqrt{15}}\)
\(=4\sqrt{5}+4\sqrt{3}-7\sqrt{3}-14+4\sqrt{2}+4+\sqrt{3}-1\)
\(=4\sqrt{5}-2\sqrt{3}+4\sqrt{2}-11\)
\(a,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}+\dfrac{3.\left(\sqrt{6}-\sqrt{5}\right)}{6-5}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+3\left(\sqrt{6}-\sqrt{5}\right)\\ =\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\\ =4\sqrt{6}-2\sqrt{5}\)
\(b,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\sqrt{4+\sqrt{15}}}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{2}{\sqrt{8+2.\sqrt{3}.\sqrt{5}}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\left|\sqrt{3}-\sqrt{2}\right|}-\dfrac{2}{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\left|\sqrt{5}+\sqrt{3}\right|}\)
\(=\sqrt{5}+\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{3-2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{3}\\ =0\)
a: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+\dfrac{3\left(\sqrt{6}-\sqrt{5}\right)}{1}\)
\(=\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\)
\(=-2\sqrt{5}+4\sqrt{6}\)
b: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)
\(=\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)
\(=\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{2}\)
=2căn 5-2căn 3
\(A=\dfrac{4+\sqrt{15}}{4-\sqrt{15}}+\dfrac{4-\sqrt{15}}{4+\sqrt{15}}\)
\(=\dfrac{\left(4+\sqrt{15}\right)^2+\left(4-\sqrt{15}\right)^2}{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)
\(=\dfrac{\left(16+8\sqrt{15}+15\right)+\left(16-8\sqrt{15}+15\right)}{16-15}\)
\(=\dfrac{62}{1}=62\)