Cho tam giác ABC, đường cao AH, kẻ HE ⊥ AB tại E, kéo dài HE lấy EM = EH. Kẻ HF ⊥ AC tại F, kéo dài HF lấy FN = FH. Gọi I là trung điểm của MN. Chứng minh:
a) AB là trung trực của MH. AC là trung trực của NH
b) Tam giác AMN cân
c) EF song song MN
d) AI ⊥ EF
a: Ta có: AB vuông góc với HM tại E
mà E la trung điểm của HM
nên AB là trung trực của MH
Ta có: AC vuông góc với HN tại F
mà F la trung điểm của HN
nên AC là đừog trug trực của HN
b: Ta có: AM=AH
AN=AH
DO đó; AM=AN
hay ΔAMN can tại A
c: Xét ΔHNM có HE/EM=HF/FN
nên FE//MN