a)(\(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\)) . \(\sqrt{3}\)
b) \(\left(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)
\(=0\)
b: Ta có: \(\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}\)
\(=5+7-1\)
=11
a)
\(\sqrt{12}-\sqrt{27}+\sqrt{3}=\sqrt{4}.\sqrt{3}-\sqrt{9}.\sqrt{3}+\sqrt{3}=2\sqrt{3}-3\sqrt{3}+\sqrt{3}\)
\(=\sqrt{3}(2-3+1)=0\)
b)
\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}.\sqrt{63}-\sqrt{4}.\sqrt{175}+\sqrt{4}.\sqrt{252}-\sqrt{4}.\sqrt{112}\)
\(=2(\sqrt{63}-\sqrt{175}+\sqrt{252}-\sqrt{112})\)
\(=2(\sqrt{9}.\sqrt{7}-\sqrt{25}.\sqrt{7}+\sqrt{36}.\sqrt{7}-\sqrt{16}.\sqrt{7})\)
\(=2(3\sqrt{7}-5\sqrt{7}+6\sqrt{7}-4\sqrt{7})=2\sqrt{7}(3-5+6-4)=0\)
------------------
\(\sqrt{3}(\sqrt{12}+\sqrt{27}-\sqrt{3})=\sqrt{36}+\sqrt{81}-\sqrt{9}\)
\(=\sqrt{6^2}+\sqrt{9^2}-\sqrt{3^2}=6+9-3=12\)
c)
\(\frac{\sqrt{6}+\sqrt{10}}{\sqrt{21}+\sqrt{35}}=\frac{\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{5}}{\sqrt{7}.\sqrt{3}+\sqrt{7}.\sqrt{5}}=\frac{\sqrt{2}(\sqrt{3}+\sqrt{5})}{\sqrt{7}(\sqrt{3}+\sqrt{5})}=\frac{\sqrt{2}}{\sqrt{7}}\)
\(\frac{\sqrt{405}+3\sqrt{27}}{3\sqrt{3}+\sqrt{45}}=\frac{\sqrt{81}.\sqrt{5}+3\sqrt{9}.\sqrt{3}}{3\sqrt{3}+\sqrt{9}.\sqrt{5}}=\frac{9\sqrt{5}+9\sqrt{3}}{3\sqrt{3}+3\sqrt{5}}\)
\(=\frac{3(3\sqrt{5}+3\sqrt{3})}{3\sqrt{3}+3\sqrt{5}}=3\)
d)
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{6}-\sqrt{9}-\sqrt{12}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{6}+\sqrt{9}+\sqrt{12})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-(\sqrt{2}.\sqrt{3}+\sqrt{3}.\sqrt{3}+\sqrt{3}.\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}-\sqrt{3}(\sqrt{2}+\sqrt{3}+\sqrt{4})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{(\sqrt{2}+\sqrt{3}+\sqrt{4})(1-\sqrt{3})}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1-\sqrt{3}\)
c.√252−√700+√1008−√448
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)
=(6-10+12-8)\(\sqrt{7}\)
=0
Bài 1:
a: \(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}\)
\(=8\sqrt{7}\)
Bài 3:
a: \(\sqrt{27^2-23^2}=10\sqrt{2}\)
b: \(\sqrt{37^2-35^2}=12\)
c: \(\sqrt{65^2-63^2}=16\)
d: \(\sqrt{117^2-108^2}=45\)
Bấm máy tính là ra thui mà bn
a/ \(=2\sqrt{3}-3\sqrt{3}+\sqrt{3}=0\)
b/ \(=\left(2\sqrt{3}-10\sqrt{3}\right)\sqrt{3}=-24\)
c/ \(=15-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=15-6\sqrt{7}\)
d/ \(=\sqrt{3}\left(2\sqrt{3}+3\sqrt{3}-\sqrt{3}\right)=12\)
\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}\)
\(=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
a)\(\left(\sqrt{12}+\sqrt{75}+\sqrt{27}\right)\div\sqrt{15}=\left(2\sqrt{3}+5\sqrt{3}+3\sqrt{3}\right)\div\sqrt{3}\sqrt{5}=10\sqrt{3}\div\sqrt{3}\sqrt{5}=\sqrt{2}\sqrt{5}\div\sqrt{5}=\sqrt{2}\)b)\(\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{4}\sqrt{9}\sqrt{7}-\sqrt{100}\sqrt{7}+\sqrt{16}\sqrt{9}\sqrt{7}-\sqrt{64}\sqrt{7}=2\cdot3\cdot\sqrt{7}-10\cdot\sqrt{7}+4\cdot3\cdot\sqrt{7}-8\sqrt{7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)
c)\(\sqrt{27^2-23^2}+\sqrt{37^2-35^2}=\sqrt{\left(27-23\right)\left(27+23\right)}+\sqrt{\left(37-35\right)\left(37+35\right)}=\sqrt{4\cdot50}\cdot\sqrt{2\cdot72}=\sqrt{4\cdot50\cdot2\cdot72}=\sqrt{2^2\cdot2\cdot25\cdot2\cdot36\cdot2}=\sqrt{16}\cdot\sqrt{25}\cdot\sqrt{36}=4\cdot5\cdot6=120\)
d)\(\left(\sqrt{\dfrac{1}{7}}+\sqrt{\dfrac{16}{7}}+\sqrt{\dfrac{9}{7}}\right)\div\sqrt{7}=\left(\dfrac{1}{\sqrt{7}}+\dfrac{4}{\sqrt{7}}+\dfrac{3}{\sqrt{7}}\right)\cdot\dfrac{1}{\sqrt{7}}=\dfrac{7}{\sqrt{7}}\cdot\dfrac{1}{\sqrt{7}}=1\)
\(A=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3x^2+6xy+3y^2}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x^2++2xy+y^2\right)}{4}}=\dfrac{2}{x^2-y^2}\cdot\sqrt{\dfrac{3\left(x-y\right)^2}{4}}=\dfrac{2}{\left(x-y\right)\left(x+y\right)}\cdot\dfrac{\sqrt{3}\left(x-y\right)}{2}=\dfrac{\sqrt{3}}{x+y}\)
\(B=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(1-4a+4a^2\right)}=\dfrac{1}{2a-1}\cdot\sqrt{5a^4\left(2a-1\right)^2}=\dfrac{1}{2a-1}\cdot\sqrt{5}a^2\left(2a-1\right)=\sqrt{5}\cdot a^2\)
\(\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\sqrt{3}\)
\(=\left(2\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}\)
\(=\left(2\sqrt{3}-9\sqrt{15}\right)\sqrt{3}\)
\(=6-9\sqrt{45}\)
\(a.\left(\sqrt{12}+3\sqrt{15}-4\sqrt{135}\right)\sqrt{3}=\left(2\sqrt{3}+3\sqrt{15}-12\sqrt{15}\right)\sqrt{3}=2.3-9\sqrt{9.5}=6-27\sqrt{5}\) \(b.\sqrt{252}-\sqrt{700}+\sqrt{1008}-\sqrt{448}=\sqrt{36.7}-\sqrt{100.7}+\sqrt{144.7}-\sqrt{64.7}=6\sqrt{7}-10\sqrt{7}+12\sqrt{7}-8\sqrt{7}=0\)