tìm x
(x+3)y+1=(2x-1)y+1 y\(\in\)N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a)
$3^{2x+1}.7^y=9.21^x=3^2.(3.7)^x=3^{2+x}.7^x$
Vì $x,y$ là số tự nhiên nên suy ra $2x+1=2+x$ và $y=x$
$\Rightarrow x=y=1$
b) \(\frac{27^x}{3^{2x-y}}=\frac{3^{3x}}{3^{2x-y}}=3^{x+y}=243=3^5\Rightarrow x+y=5(1)\)
\(\frac{25^x}{5^{x+y}}=\frac{5^{2x}}{5^{x+y}}=5^{x-y}=125=5^3\Rightarrow x-y=3\) $(2)$
Từ $(1);(2)\Rightarrow x=4; y=1$
Sửa đề bài: \(2^x=8^{y+1}\)và \(9^y=3^{x-9}\)
Có: \(2^x=8^{y+1}\)
\(\Leftrightarrow2^x=\left(2^3\right)^{y+1}\)
\(\Leftrightarrow2^x=2^{3y+3}\)
\(\Leftrightarrow x=3y+3\) (1)
Lại có: \(9^y=3^{x-9}\)
\(\Leftrightarrow\left(3^2\right)^y=3^{x-9}\)
\(\Leftrightarrow3^{2y}=3^{x-9}\)
\(\Leftrightarrow2y=x-9\) (2)
Thay (1) vào (2), ta có:
=> 2y = 3y + 3 - 9
=> 2y = 3y - 6
=> 2y - 3y = -6
=> -1y = -6
=> y = 6 \(\left(y\in N\right)\)
Từ x = 3y + 3 (theo điều 1)
=> x = 3.6 + 3 = 21 \(\left(x\in N\right)\)
Vậy x + y = 21 + 6 = 27
1, để \(\dfrac{2x+1}{x+3}\) là 1 số nguyên
= > 2x + 1 chia hết cho x + 3 ( x thuộc Z và x \(\ne3\) )
= > 2 ( x + 3 ) - 5 chia hết cho x + 3
=> -5 chia hết cho x + 3
hay x + 3 thuộc Ư(-5 ) \(\in\left\{\pm1;\pm5\right\}\)
Đến đây em tự tìm các giá trị của x
2, Tương tự câu 1, x - 1 chia hết cho x + 5 ( x thuộc Z và x khác - 5 )
= > - 6 chia hết cho x + 5
= > \(x+5\in\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
....
3, ( x - 1 ) ( y - 3 ) = 7
x,y thuộc Z = > x - 1 ; y - 3 thuộc Ư(7)
và ( x - 1 )( y - 3 ) = 7
( 1 ) \(\left\{{}\begin{matrix}x-1=1\\y-3=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=10\end{matrix}\right.\)
(2) \(\left\{{}\begin{matrix}x-1=7\\y-3=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
( 3) \(\left\{{}\begin{matrix}x-1=-1\\y-3=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=-4\end{matrix}\right.\)
( 4 ) \(\left\{{}\begin{matrix}x-1=-7\\y-3=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=2\end{matrix}\right.\)
Từ ( 1 ) , ( 2 ) , ( 3 ) , ( 4 ) các cặp giá trị ( x,y ) nguyên cần tìm là ....
Nhân cả 2 vế với 3 ta có:
\(pt\Leftrightarrow2x-\dfrac{6}{y}=1\Leftrightarrow2x=1+\dfrac{6}{y}\)
Nhận thấy rằng 2x là số nguyên, 1 là số nguyên nên \(\dfrac{6}{y}\) cũng là số nguyên
=> y ∈ Ư(6) = {\(\pm\)1; \(\pm\)2; \(\pm\)3; \(\pm\)6}
Mà 2x là số chẵn => \(1+\dfrac{6}{y}\) là số chẵn => y ∈ {\(\pm\)2; \(\pm\)6}
+) \(y=-6\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{-6}\right)=0\)
+) \(y=-2\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{-2}\right)=-1\)
+) \(y=2\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{2}\right)=2\)
+) \(y=6\Rightarrow x=\dfrac{1}{2}\left(1+\dfrac{6}{6}\right)=1\)
\(\left(x+3\right)^{y+1}=\left(2x-1\right)^{y+1}\)
\(\Rightarrow x+3=2x-1\)
\(\Rightarrow2x-x=3+1\)
\(\Rightarrow x=4\)
(x+3)y+1=(2x-1)y+1
⇒ x+3=2x-1
x-2x=-1-3
-x=-4
⇒x=4