CMR:\(2\sqrt{2+\sqrt{3}}=\sqrt{6}+\sqrt{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\dfrac{\sqrt{2}+\sqrt{3}}{\sqrt{2}-\sqrt{3}}-\dfrac{\sqrt{2}-\sqrt{3}}{\sqrt{2}+\sqrt{3}}\right)\left(\dfrac{\sqrt{3}-1}{3\sqrt{2}-\sqrt{6}}\right)\)
\(=\dfrac{5+2\sqrt{6}-5+2\sqrt{6}}{-1}\cdot\dfrac{1}{\sqrt{6}}\)
=-4
a: Sửa đề: căn 6+2căn 5-căn 5
\(a=\dfrac{\left(\sqrt{3}+1\right)\left(\sqrt{3}-1\right)}{\sqrt{5}+1-\sqrt{5}}=\dfrac{2}{1}=2\)
b: \(a^3=2-\sqrt{3}+2+\sqrt{3}+3a\)
=>a^3-3a-4=0
=>a^3-3a=4
\(\dfrac{64}{\left(a^2-3\right)^3}-3a=\left(\dfrac{4}{a^2-3}\right)^3-3a\)
\(=\left(\dfrac{a^3-3a}{a^2-3}\right)^3-3a=a^3-3a\)
=4
a) Ta có: \(VT=\sqrt{9-\sqrt{17}}\cdot\sqrt{9+\sqrt{17}}\)
\(=\sqrt{\left(9-\sqrt{17}\right)\cdot\left(9+\sqrt{17}\right)}\)
\(=\sqrt{81-17}=\sqrt{64}=8\)=VP(đpcm)
b) Ta có: \(VT=2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}\)
\(=2\sqrt{6}-4\sqrt{2}+1+4\sqrt{2}+8-2\sqrt{6}\)
=9=VP(đpcm)
Đặt \(\sqrt{2+\sqrt{3}}=a\left(a>0\right)\)
Ta có x=\(\sqrt{2+a}-\sqrt{3\left(2-a\right)}\Rightarrow x^2=2+a+3\left(2-a\right)-2\sqrt{3\left(2+a\right)\left(2-a\right)}\)\(=8-2a-2\sqrt{3\left(4-a^2\right)}=8-2a-2\sqrt{3\left(4-2-\sqrt{3}\right)}=8-2a-\sqrt{6}\sqrt{4-2\sqrt{3}}\)
\(=8-2\sqrt{2+\sqrt{3}}-\sqrt{6}\left(\sqrt{3}-1\right)=8-\sqrt{2}\sqrt{4+2\sqrt{3}}-3\sqrt{2}+\sqrt{6}\)
\(=8-\sqrt{2}\left(\sqrt{3}+1\right)-3\sqrt{2}+\sqrt{6}=8-\sqrt{6}-\sqrt{2}-3\sqrt{2}+\sqrt{6}=8-4\sqrt{2}\)
\(\Rightarrow x^2-8=-4\sqrt{2}\Rightarrow\left(x^2-8\right)^2=32\Rightarrow x^4-16x^2+64=32\Rightarrow x^4-16x^2+32=0\left(ĐPCM\right)\)
\(\dfrac{\sqrt{3}+\sqrt{4}+\sqrt{5}+\sqrt{6}+\sqrt{8}+\sqrt{10}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)+\sqrt{2}.\sqrt{3}+\sqrt{2}.\sqrt{4}+\sqrt{2}.\sqrt{5}}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=\dfrac{\left(\sqrt{3}+\sqrt{4}+\sqrt{5}\right)\left(1+\sqrt{2}\right)}{\sqrt{3}+\sqrt{4}+\sqrt{5}}\)
\(=1+\sqrt{2}\)
⇒ ĐPCM
a/ Đặt cái trong là A ta có
A > \(\sqrt{1}\)= 1(1)
A < \(\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{4}}}}}\)
= 2 (2)
Từ (1) và (2) => 1 < A < 2
\(\frac{\sqrt{2\sqrt{3}+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\\ =\frac{\sqrt{2\sqrt{3}+\sqrt{5-\sqrt{\left(\sqrt{12}+1\right)^2}}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2\sqrt{3}+\sqrt{5-\sqrt{12}-1}}}{\sqrt{6}+\sqrt{2}}\\ =\frac{\sqrt{2\sqrt{3}+\sqrt{\left(\sqrt{3}-1\right)^2}}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{2\sqrt{3}+\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
\(=\frac{\sqrt{3\sqrt{3}-1}}{\sqrt{6}+\sqrt{2}}\)
mk ko pit lm tiep dau nha
CMR: \(x^4-16.x^2+32=0\)
có 1 nghiệm là:
\(x=\sqrt{6-3.\sqrt{2+\sqrt{3}}}+\sqrt{2+\sqrt{2+\sqrt{3}}}\)
Câu hỏi của Phạm Thị Thu Trang - Toán lớp 9 - Học toán với OnlineMath
\(VT=2\sqrt{2+\sqrt{3}}=\sqrt{2}.\sqrt{3+2\sqrt{3}+1}=\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+\sqrt{2}=VP\) Vậy , đẳng thức được chứng minh .
BĐVT có :\(2\sqrt{2+\sqrt{3}}=\sqrt{2}.\sqrt{3+2\sqrt{3}+1}\)
=\(\sqrt{2}\left(\sqrt{3}+1\right)=\sqrt{6}+2\)
\(\Rightarrow\)VT=VP(đpcm)