Phân tích đa thức thành nhân tử a) x^2 (x -2) - 4x +8 b) x^2 + 7xy + 10y^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= x^2 - 7xy + 10y^2
= x^2 - 2xy -5xy + 10y^2
= x( x - 2y ) - 5y( x - 2y )
= ( x - 2y )( x - 5y )
a) \(x^2+6x+8\)
\(=\left(x^2-2x\right)-4x+8\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(\left(x-2\right)\left(x-4\right)\)
b) \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-2y\right)\left(x-5y\right)\)
a) x2 - 6x + 8
= x2 -2x - 4x +8
= x( x-2) -4( x-2)
= ( x-2)(x-4)
x^2 - 7xy + 10y^2
= (x^2 - 2xy) - (5xy - 10y^2)
= x(x - 2y) - 5y( x - 2y)
= (x - 5y)(x - 2y)
a) x3 - 4x2 - 12x + 27
= \(\left(x^3+3x^2\right)-\left(7x^2+21x\right)+\left(9x+27\right)\)
= \(\left(x+3\right)\left(x^2-7x+9\right)\)
b) 9x2 + 6x - 8
=\(9x^2-6x+12x-8=3x\left(3x-2\right)+4\left(3x-2\right)\)
=\(\left(3x-2\right)\left(3x+4\right)\)
c) x2 - 7xy + 10y2
=\(x^2-5xy-2xy+10y^2=x\left(x-5y\right)-2y\left(x-5y\right)\)
=\(\left(x-5y\right)\left(x-2y\right)\)
a) x3 - 4x2 - 12x + 27
=x3 + 3x2 - 7x2 - 21x + 9x + 27
= x2(x+3) - 7x(x+3) + 9(x+3)
= (x2 - 7x + 9)(x + 3)
b) 9x2 + 6x - 8
= 9x2 - 6x + 12x - 8
= 3x(3x - 2) + 4(3x - 2)
= (3x + 4)(3x - 2)
c) x2 - 7xy + 10y2
= x2 - 5xy - 2xy + 10y2
= x(x - 5y) - 2y(x - 5y)
= (x - 2y)(x - 5y)
d) x8 + x7 + 1
Ta thêm vào các số hạng x6, x5, x4, x3, x2, x và cùng bớt đi các số hạng ấy ta có:
= x8 - x6 + x5 - x3 + x2 + x7 - x5 + x4 -x2 +x + x6 - x4 + x3 - x + 1
= x2(x6 - x4 + x3 - x + 1) + x(x6 - x4 + x3 - x + 1) + x6 - x4 + x3 - x + 1
= (x2 + x + 1)(x6 - x4 + x3 - x + 1)
a: x^2+4xy-21y^2
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b: \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
=5x(x+y)+y(x+y)
=(x+y)(5x+y)
c: \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
=x(x+5y)-3y(x+5y)
=(x+5y)(x-3y)
d: \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
=x(x-2y)-5y(x-2y)
=(x-2y)(x-5y)
a) \(x^2+4xy-21y^2\)
\(=x^2+7xy-3xy-21y^2\)
\(=x\left(x+7y\right)-3y\left(x+7y\right)\)
\(=\left(x+7y\right)\left(x-3y\right)\)
b) \(5x^2+6xy+y^2\)
\(=5x^2+5xy+xy+y^2\)
\(=5x\left(x+y\right)+y\left(x+y\right)\)
\(=\left(5x+y\right)\left(x+y\right)\)
c) \(x^2+2xy-15y^2\)
\(=x^2+5xy-3xy-15y^2\)
\(=x\left(x+5y\right)-3y\left(x+5y\right)\)
\(=\left(x+5y\right)\left(x-3y\right)\)
d) \(x^2-7xy+10y^2\)
\(=x^2-2xy-5xy+10y^2\)
\(=x\left(x-2y\right)-5y\left(x-2y\right)\)
\(=\left(x-5y\right)\left(x-2y\right)\)
\(x^2+4x-y^2+4\)
\(=\left(x^2+4x+4\right)-y^2\)
\(=\left(x^2+2\right)^2-y^4\)
\(=\left(x^2+y^2+2\right)\left(x^2-y^2+2\right)\)
\(\left(x^2+4x+4\right)-y^2\)
\(=\left(x+2\right)^2-y^2\)
\(=\left(x+2+y\right)\left(x+2-y\right)\)
.
hk tôt
\(a,x^2\left(x-2\right)-4x+8\\ =\left(x^2-4\right)\left(x-2\right)\\ =\left(x-2\right)^2\left(x+2\right)\\ b,x^2+7xy+10y^2\\ =x^2+2xy+5xy+10y^2\\ =x\left(x+2y\right)+5y\left(x+2y\right)\\ =\left(x+5y\right)\left(x+2y\right)\)