K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018

Áp dụng bđt AM-GM:

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{xz}\)

Nhân theo vế:\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8xyz\)

\("="\) khi x=y=z

Khi đó hiển nhiên \(x^3+y^3+z^3=3xyz\)

8 tháng 7 2018

Áp dụng BĐT Cosi cho 3 số x,y,z dương ta có:

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}\)

Nhân các BĐT vế theo vế ta được:

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu "=" xảy ra khi x = y = z

<=> x-y=y-z=z-x=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>x2+y2+z2-xy-yz-zx=0

<=>(x+y+z)(x2+y2+z2-xy-yz-zx)=0 (vì x,y,z>0 nên x+y+z>0)

<=>x3+y3+z3-3xyz=0

<=>x3+y3+z3=3xyz (đpcm)

2 tháng 7 2021

Áp dụng bất đẳng thức Co-si cho hai số không âm ta có: 

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{zx}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)

Dấu "=" <=> x = y = z. (đpcm)

2 tháng 7 2021
Câu trả lời bằng hình

Bài tập Tất cả

29 tháng 6 2015

Áp dụng BĐT cô-si cho 2 số dương ta có:

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu"=" xảy ra <=>x=y y=z z=x=>x=y=z

=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=8xyz\Leftrightarrow x=y=z\)(ĐPCM)
 

19 tháng 9 2019

Áp dụng BĐT Cauchy cho 2 số không âm, ta được:

\(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow x+y\ge2\sqrt{xy}\)

\(\frac{y+z}{2}\ge\sqrt{yz}\Rightarrow y+z\ge2\sqrt{yz}\)

\(\frac{x+z}{2}\ge\sqrt{xz}\Rightarrow x+z\ge2\sqrt{xz}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)(Vì x,y,z > 0)

26 tháng 10 2020

Vì x,y,z là các số nguyên dương

nên áp dụng bất đẳng thức Cauchy ta có :

\(x+y\ge2\sqrt{xy}\)(1)

\(y+z\ge2\sqrt{yz}\)(2)

\(z+x\ge2\sqrt{zx}\)(3)

Nhân (1), (2) và (3) theo vế ta có :

\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}\cdot2\sqrt{yz}\cdot2\sqrt{zx}=8\sqrt{xy\cdot yz\cdot zx}=8\sqrt{x^2y^2z^2}=8\left|xyz\right|=8xyz\)

( do x,y,z là các số nguyên dương )

Đẳng thức xảy ra <=> x = y = z

=> đpcm

3 tháng 6 2018

áp dụng BĐT AM-GM 

ta có \(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{zx}\)

=>\(\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=8xyz\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}\Leftrightarrow x=y=z\left(ĐPCM\right)}\)

22 tháng 11 2022

Bài 3:

\(\left\{{}\begin{matrix}x+y>=2\sqrt{xy}\\y+z>=2\sqrt{yz}\\x+z>=2\sqrt{xz}\end{matrix}\right.\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)>=8xyz\)

Dấu = xảy ra khi x=y=z

14 tháng 9 2018

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

\(\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=0\)

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

14 tháng 9 2018

ta co: \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}.\)

=> 1/xy + 1/yz + 1/xz = 0

=> x + y + z = 0

Lai co: x3 + y3 +z3 - 3xyz = (x+y+z).(x2+y2+z2 - xy - yz - zx)

             x3 + y3 + z3 - 3xyz = 0

=> x3 + y3 + z3 = 3xyz

18 tháng 3 2017

đề vũng tàu đây mà 

18 tháng 2 2022

lllllllllllllllllllllllllllllllllllllllllllllllllllllll

18 tháng 2 2022

mn giúp mình với