K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2018
https://i.imgur.com/Fyq68El.png
3 tháng 5 2017

DO A LÀ SỐ CHÍNH PHƯƠNG VÀ A KHÁC 0 , A CÓ 1 CHỮ SỐ

=> A CÓ THỂ BẰNG 1 . 4 . 9

+, TH1 : A = 1

=> 1D LÀ SỐ CHÍNH PHƯƠNG

=> D = 6

=> C6 LÀ SỐ CHÍNH PHƯƠNG

=> C = 3 HOẶC BẰNG 1( TH 1 KHÔNG THỎA MÃN)

=> 1B36 LÀ SỐ CHÍNH PHƯƠNG

=> B = 9 ( DO 44^2 = 1936

+. TH2 : A= 4

=> 4D LÀ SỐ CHÍNH PHƯƠNG 

=> D = 9

=> C9 LÀ SỐ CHÍNH PHƯƠNG

=> C HOẶC BẰNG 0 , HOẶC BẰNG 4

+. NẾU C = 0

=> 4B09 LÀ SỐ CHÍNH PHƯƠNG

=> LOẠI DO KHÔNG CÓ B THỎA MÃN

+, NẾU C = 4

=> 4B49 LÀ SỐ CHÍNH PHƯƠNG

=> KHÔNG TỒN TẠI B THỎA MÃN

+, A = 9

=> 9D LÀ SỐ CHÍNH PHƯƠNG 

=> KHÔNG TÍM THẤY D THỎA MÃN

 VẬY A= 1 , B = 9 , C=3 , D=6

3 tháng 5 2017

a=1,4,9.

Nếu a=1→b=6→c=9, nhưng không có d thỏa mãn giả thiết

Nếu a=4→b=9, nhưng không có c thỏa mãn giả thiết.

Nếu a=9→b=, nhưng khôn có c thoản mãn giả thiết.

Vậy không tồn tại a,b,c,d thỏa đề ra !

30 tháng 3 2023

Đúng mình sẽ like nha

 

18 tháng 1 2020

Câu 2. Giả sử ${{n}^{2}}=\overline{abcd}=100\overline{ab}+\overline{cd}=100\left( 1+\overline{cd} \right)+\overline{cd}=101\overline{cd}+100,n\in Z$

$\Rightarrow 101\overline{cd}={{n}^{2}}-100=\left( n-10 \right)\left( n+10 \right).$

Vì $n<100$ và $101$ là số nguyên tố nên $n+10=101\Rightarrow n=91.$

Thử lại: $\overline{abcd}={{91}^{2}}=8281$ có $82-81=1.$

Vậy $\overline{abcd}=8281$

18 tháng 1 2020

Câu 1:

\(xy+3x-y=6\)

\(\Rightarrow xy+3x-y-3=6-3\)

\(\Rightarrow\left(xy+3x\right)-\left(y+3\right)=3\)

\(\Rightarrow x.\left(y+3\right)-\left(y+3\right)=3\)

\(\Rightarrow\left(y+3\right).\left(x-1\right)=3\)

\(x,y\in Z\Rightarrow\left\{{}\begin{matrix}y+3\in Z\\x-1\in Z\end{matrix}\right.\)

\(\Rightarrow y+3\inƯC\left(3\right);x-1\inƯC\left(3\right)\)

\(\Rightarrow y+3\in\left\{1;3;-1;-3\right\};x-1\in\left\{1;3;-1;-3\right\}.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y+3=1\\x-1=3\end{matrix}\right.\\\left\{{}\begin{matrix}y+3=3\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+3=-1\\x-1=-3\end{matrix}\right.\\\left\{{}\begin{matrix}y+3=-3\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=-2\\x=4\end{matrix}\right.\left(TM\right)\\\left\{{}\begin{matrix}y=0\\x=2\end{matrix}\right.\left(TM\right)\\\left\{{}\begin{matrix}y=-4\\x=-2\end{matrix}\right.\left(TM\right)\\\left\{{}\begin{matrix}y=-6\\x=0\end{matrix}\right.\left(TM\right)\end{matrix}\right.\)

Vậy cặp số nguyên \(\left(x;y\right)\) thỏa mãn đề bài là: \(\left(4;-2\right),\left(2;0\right),\left(-2;-4\right),\left(0;-6\right).\)

Chúc bạn học tốt!

2 tháng 8 2023

\(\overline{abcd}⋮9\)  (d là số nguyên tố)

\(\Rightarrow d\in\left\{3;5;7\right\}\)

mà \(\overline{abcd}\) là số chính phương

\(\Rightarrow d\in\left\{5\right\}\Rightarrow c\in\left\{2\right\}\)

\(\Rightarrow\overline{ab}\in\left\{12;20;30;56;72\right\}\)

mà \(\left\{{}\begin{matrix}a+b+c+d⋮9\\c+d=2+5=7\end{matrix}\right.\)

\(\Rightarrow\overline{ab}\in\left\{20;56\right\}\)

\(\Rightarrow\overline{abcd}\in\left\{2025;5625\right\}\)

3 tháng 2 2023

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

3 tháng 2 2023

Các bạn giải nhanh cho mình nhé. Thanks!

Ta có : \(\overline{ab}-\overline{ba}=\) (10a +b) \(-\) (10b +a) \(=\) 10a + b \(-\) 10b \(-\) a \(=\) 9a \(-\) 9b 

\(=\) 9(a\(-\)b) \(=\) 32(a\(-\)b)

=> a, b ∉ {1;2;3;4;5;6;7;8;9} => 1 ≤ a- b ≤ 8 

Để \(\overline{ab}-\)\(\overline{ba}\) là số chính phương thì a – b = 1; 4

+) a – b = 1 (mà a > b) ta có các số \(\overline{ab}\) là : 98 ; 87 ; 76; 65; 54 ; 43; 32; 21

\(\overline{ab}\) là số nguyên tố nên chỉ có số 43 thoả mãn

+) a – b = 4 (mà a > b) ta có các số \(\overline{ab}\) là : 95 ; 84 ; 73; 62; 51

\(\overline{ab}\) là số nguyên tố nên chỉ có số 73 thoả mãn

Vậy có hai số thoả mãn điều kiện bài toán là 43 và 73

25 tháng 2 2021

ab - ba = 10a + b - (10b +a) = 9a - 9 b = 9(a - b)= 32 (a - b)

Để ab - ba là số chính phương thì a - b là số chính phương mà a; b là các chữ số

nên a - b chỉ có thể = 1;  4; 9

+) a - b = 1 ; ab nguyên tố   => ab = 43 

+) a - b = 4 => ab= 73  thỏa mãn

+) a- b = 9 => ab = 90 loại

Vậy ab = 43 hoặc 73