1. Tính: \(\dfrac{45^{10}.5^{20}}{75^{15}}\)
2. Tìm x thuộc Z biết: \(5^x+5^{x+2}=650\)
các bn giúp mk vs nha mk tik cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) |x + 4| = 17
=> \(\orbr{\begin{cases}x+4=17\\x+4=-17\end{cases}}\)
=> \(\orbr{\begin{cases}x=13\\x=-21\end{cases}}\)
b) (7 - x) - (25 + 7) = -25
=> (7 - x) - 32 = -25
=> 7 - x = -25 + 32
=> 7 - x = 7
=> x = 7 - 7
=> x = 0
c. |x + 5| = |-7|
=> |x + 5 | = 7
=> \(\orbr{\begin{cases}x+5=7\\x+5=-7\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-12\end{cases}}\)
2) 4 . (-5)2 + 2 . (-15)
= 2. 2 . 25 + 2 . (-15)
= 2.(2 . 25 - 15)
= 2 . 35
= 70
Bài 1 :
Ta có :
\(\left|2x-1\right|=5\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=6\\2x=-4\end{cases}}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=\frac{6}{2}\\x=\frac{-4}{2}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}}\)
Vậy \(x=-2\) hoặc \(x=3\)
Bài 2 :
Đặt \(A=\frac{3x+4}{x-1}\) ta có :
\(A=\frac{3x+4}{x-1}=\frac{3x-3+7}{x-1}=\frac{3x-3}{x-1}+\frac{7}{x-1}=\frac{3\left(x-1\right)}{x-1}+\frac{7}{x-1}=3+\frac{7}{x-1}\)
Để A là số nguyên thì \(\frac{7}{x-1}\) phải nguyên \(\Rightarrow\)\(7⋮\left(x-1\right)\)\(\Rightarrow\)\(\left(x-1\right)\inƯ\left(7\right)\)
Mà \(Ư\left(7\right)=\left\{1;-1;7;-7\right\}\)
Suy ra :
\(x-1\) | \(1\) | \(-1\) | \(7\) | \(-7\) |
\(x\) | \(2\) | \(0\) | \(8\) | \(-6\) |
Vậy \(x\in\left\{-6;0;2;8\right\}\) thì \(A\inℤ\)
Chúc bạn học tốt ~
\(1)\frac{1}{5}+\frac{2}{11}< \frac{x}{55}< \frac{2}{5}+\frac{1}{55}\)
\(\Rightarrow\frac{11}{55}+\frac{10}{55}< \frac{x}{55}< \frac{22}{55}+\frac{1}{55}\)
\(\Rightarrow\frac{21}{55}< \frac{x}{55}< \frac{23}{55}\)
\(\Rightarrow21< x< 23\)
\(\Rightarrow x=22\)
\(2)\frac{11}{3}+\frac{-19}{6}+\frac{-15}{2}\le x\le\frac{19}{12}+\frac{-5}{4}+\frac{-10}{3}\)
\(\Rightarrow\frac{22}{6}+\frac{-19}{6}+\frac{-45}{6}\le x\le\frac{19}{12}+\frac{-15}{12}+\frac{-40}{12}\)
\(\Rightarrow\frac{22+\left[-19\right]+\left[-45\right]}{6}\le x\le\frac{19+\left[-15\right]+\left[-40\right]}{12}\)
\(=\frac{-42}{6}\le x\le\frac{-36}{12}\)
\(\Rightarrow-7\le x\le-3\)
\(\Rightarrow x\in\left\{-7;-6;-5;-4;-3\right\}\)
Chia cả hai vế cho 5^x:
pt <=> (3/5)^x + (4/5)^x = 1
- Ta nhận thấy x=2 là nghiệm của phương trình
(3/5)^2 + (4/5)^2 = 1
- Ta phải chứng minh x=2 là nghiệm duy nhất của phương trình
+ với x>2: (3/5)^x < (3/5)^2 (do 3/5 <1)
(4/5)^x < (4/5)^2 (do 4/5<1)
----------------------------------------...
Cộng 2 vế: (3/5)^x + (4/5)^x < (3/5)^2 + (4/5)^2 = 1 (trái gt)
=> Phương trình không có nghiệm khi x>2.
+ Tương tự với x<2, phương trình không có nghiệm khi x<2.
- Vậy phương trình có nghiệm duy nhất x=2.
3^x+4^x=5^x vax=2
Thay x vao bieu thu ta co :
3^2+4^2=5^2
Xong roi do
\(\frac{1}{3}\) + \(\frac{5}{6}\): \(\left(x-2\frac{1}{5}\right)\)= \(\frac{3}{4}\)
<=> \(\frac{5}{6}\):\(\left(x-2\frac{1}{5}\right)\)= \(\frac{3}{4}\)- \(\frac{1}{3}\)
<=> \(\frac{5}{6}\) : \(\left(x-2\frac{1}{5}\right)\) = \(\frac{5}{12}\)
<=> \(\left(x-2\frac{1}{5}\right)\) = \(\frac{5}{6}\) : \(\frac{5}{12}\)
,<=> \(\left(x-2\frac{1}{5}\right)\)= 2
<=. x = 2 + \(\frac{11}{5}\)
<=> x = \(\frac{21}{5}\)
1. \(\dfrac{45^{10}.5^{20}}{75^{15}}=\dfrac{\left(5.3^2\right)^{10}.5^{20}}{\left(3.5^2\right)^{15}}=\dfrac{5^{30}.3^{20}}{3^{15}.5^{30}}=3^5\)
2. \(5^x+5^{x+2}=650\)
\(\Leftrightarrow5^x\left(1+5^2\right)=650\)
\(\Leftrightarrow5^x.26=650\)
\(\Leftrightarrow5^x=25\)
\(\Leftrightarrow5^x=5^2\)
\(\Leftrightarrow x=2\)
Vậy ...