K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2017

Chịu không giao luu nổi

1 tháng 1 2017

Cứ rút từ từ là ra

29 tháng 9 2017

ta có: \(\sqrt{2000}< 2001\Rightarrow\sqrt{1999.\sqrt{2000}}< \sqrt{1999.2001}< \dfrac{1999+2001}{2}=2000\)

(áp dụng BĐT AM-GM)

lấy tương tự như trên ta có:

\(\sqrt{2\sqrt{3\sqrt{4...........\sqrt{1999\sqrt{2000}}}}}\)< \(\sqrt{2\sqrt{3\sqrt{4.............\sqrt{1999.2001}}}}\)

< \(\sqrt{2\sqrt{3\sqrt{4....\sqrt{1998.2000}}}}........< \sqrt{2.4}< 3\)(ĐPCM)

29 tháng 9 2017

thanks bạn

10 tháng 11 2017

Có : 2 > \(\sqrt{3}\) ; 3 > \(\sqrt{4}\) ; ..... ; 1999 > \(\sqrt{2000}\)

=> VT = \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999\sqrt{2000}}}}}\)<   \(\sqrt{2\sqrt{3\sqrt{4......\sqrt{1999.1999}}}}\)

\(\sqrt{2\sqrt{3\sqrt{4.....\sqrt{1999}}}}\) < ........ < \(\sqrt{2\sqrt{3}}\) <  \(\sqrt{2.2}\) = 2

=> ĐPCM

10 tháng 11 2017

Ta có: \(n=\sqrt{n^2}=\sqrt{1+n^2-1}=\sqrt{1+n-1.n+1}\)

Áp dụng công thức trên với \(n=4,5,6\)ta có:

\(4=\sqrt{1+3.5}=\sqrt{1+3\sqrt{1+4\sqrt{1+5.7}}}=\sqrt{1+3\sqrt{1+\sqrt{4\sqrt{1+...n-1\sqrt{n+1^2}}}}}\)

\(>\sqrt{3\sqrt{4\sqrt{...2000}}}\)

Do đó: \(\sqrt{2+\sqrt{3\sqrt{4\sqrt{...2000}}}}< \sqrt{2+2}=2\)

\(VT=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)

\(=\sqrt{3}+1-\sqrt{3}+1\)

=2=VP

NV
10 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}\sqrt[3]{x^2}=a\ge0\\\sqrt[3]{y^2}=b\ge0\end{matrix}\right.\)

\(P=\sqrt{a^3+a^2b}+\sqrt{b^3+ab^2}=\sqrt{a^2\left(a+b\right)}+\sqrt{b^2\left(a+b\right)}\)

\(=a\sqrt{a+b}+b\sqrt{a+b}=\left(a+b\right)\sqrt{a+b}\)

\(\Rightarrow P^2=\left(a+b\right)^2\left(a+b\right)=\left(a+b\right)^3\)

\(\Rightarrow\sqrt[3]{P^2}=a+b=\sqrt[3]{x^2}+\sqrt[3]{y^2}\) (đpcm)