K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

x=450

2 tháng 7 2018

tanX +cotX = 2

<=> tanX +cotX -2=0

<=> tanX + \(\dfrac{1}{tanX}\) -2 =0

<=> \(\dfrac{\text{tan^2 X + 1 - 2tanX}}{tanX}\)=0

=> tan2X +1 - 2tanX=0

Đặt tanX=t

=> t2 -2t +1=0

<=> (t-1)2=0

=> t=1 <=> tanX=1=> x=45o

Vậy x=45o

1B

2A

3A

4C

20 tháng 8 2023

Để giải phương trình sin2x/tanx+cotx * (tanx+cotx) = 2sin2x, ta có thể sử dụng các quy tắc và công thức trong giải tích. Đầu tiên, ta có thể thay thế các hàm lượng giác bằng các công thức tương đương. Sau đó, ta có thể rút gọn và giải phương trình.

4 tháng 10 2018

Chọn B.

Ta có: A = (tanx + cotx)2 - ( tanx - cotx)2

= tan2x +  2tanx.cot x + cot2x - ( tan2x - 2tanx.cotx + cot2x)

= 4tanx.cotx = 4.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     Hàm số y = tanx nhận giá trị bằng – 1

-        Vẽ hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)

-        Vẽ hàm số y = - 1

-        Lấy giao điểm của hai hàm số y = tanx và y = - 1

b)     Hàm số y = tanx nhận giá trị bằng 0

-        Vẽ hàm số y = tanx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)

-        Vẽ hàm số y = 0

-        Lấy giao điểm của hai hàm số y = tanx và y = 0

 

c)     Hàm số y = cotx nhận giá trị bằng 1

-        Vẽ hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)

-        Vẽ hàm số y = 1

-        Lấy giao điểm của hai hàm số y = cotx và y = 1

 

d)     Hàm số y = cotx nhận giá trị bằng 0

-        Vẽ hàm số y = cotx trên khoảng \(\left( { - \pi ;\frac{{3\pi }}{2}} \right)\)

-        Vẽ hàm số y = 0

-        Lấy giao điểm của hai hàm số y = tanx và y = 0

a: pi<x<3/2pi

=>sinx<0 và cosx<0

\(1+tan^2x=\dfrac{1}{cos^2x}\)

=>\(\dfrac{1}{cos^2x}=1+\dfrac{9}{4}=\dfrac{13}{4}\)

=>\(cos^2x=\dfrac{4}{13}\)

=>\(\left\{{}\begin{matrix}cosx=-\dfrac{2}{\sqrt{13}}\\sin^2x=\dfrac{9}{13}\end{matrix}\right.\)

mà sin x<0

nên \(sinx=-\dfrac{3}{\sqrt{13}}\)

\(cotx=1:\dfrac{3}{2}=\dfrac{2}{3}\)

b: 0<x<90 độ

=>sin x>0 và cosx>0

\(1+tan^2x=\dfrac{1}{cos^2x}\)

=>\(\dfrac{1}{cos^2x}=1+\dfrac{1}{3}=\dfrac{4}{3}\)

=>\(cos^2x=\dfrac{3}{4}\)

=>\(cosx=\dfrac{\sqrt{3}}{2}\)

=>\(sinx=\dfrac{1}{2}\)

cotx=1:căn 3/3=3/căn 3=căn 3

c: 3/2pi<x<2pi

=>sinx<0 và cosx>0

\(1+cot^2x=\dfrac{1}{sin^2x}\)

=>\(\dfrac{1}{sin^2x}=1+\dfrac{1}{3}=\dfrac{4}{3}\)

=>\(sin^2x=\dfrac{3}{4}\)

mà sin x<0

nên \(sinx=-\dfrac{\sqrt{3}}{2}\)

\(cos^2x=1-\dfrac{3}{4}=\dfrac{1}{4}\)

mà cosx>0

nên cosx=1/2