Cho \(\Delta\)ABC can o A . tren canh AB lay diem D, tren canh AC lay diem E sao choAD=AE . goiM la giao diem cua BE va CD . cmr
a, BE=CD
b,\(\Delta BMD=\Delta CME\)
c, AM la phan giac goc BAC
d, DE//BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bn Quý j đó ơi vẽ hình ra cko mik nha
Vẽ hình mk ms giải đc
b) Xét hai tam giác ABE và ACD có:
AB = AC (do \(\Delta ABC\) cân tại A)
\(\widehat{A}\): góc chung
AD = AE (gt)
Vậy: \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)
Suy ra: BE = CD (hai cạnh tương ứng)
c) Ta có: \(\widehat{D_1}+\widehat{D_2}=180^o\)
\(\widehat{E_1}+\widehat{E_2}=180^o\)
Mà \(\widehat{D_1}=\widehat{E_1}\) (\(\Delta ABE=\Delta ACD\))
\(\Rightarrow\) \(\widehat{D_2}=\widehat{E_2}\)
Ta lại có: BD = AB - AD
CE = AC - AE
Mà AB = AC (do \(\Delta ABC\) cân tại A)
AD = AE (gt)
\(\Rightarrow\) BD = CE
Xét hai tam giác BDM và CEM có:
\(\widehat{ABE}=\widehat{ACD}\) (\(\Delta ABE=\Delta ACD\))
BD = CE (cmt)
\(\widehat{D_2}=\widehat{E_2}\) (cmt)
Vậy: \(\Delta BDM=\Delta CEM\left(g-c-g\right)\)
d) Xét hai tam giác ABM và ACM có:
AB = AC (do \(\Delta ABC\) cân tại A)
MB = MC (\(\Delta BDM=\Delta CEM\))
AM: cạnh chung
Vậy: \(\Delta ABM=\Delta ACM\left(c-c-c\right)\)
Suy ra: \(\widehat{A_1}=\widehat{A_2}\) (hai góc tương ứng)
Do đó: AM là tia phân giác của \(\widehat{BAC}\) (đpcm).
Cho mk hỏi M là giao điểm của BE và CD hay của BD và CD vậy?
Giải:
a) Xét \(\Delta ACD,\Delta ABE\) có:
AC = AB ( gt )
\(\widehat{A}\): góc chung
AD = AE ( gt )
\(\Rightarrow\Delta ACD=\Delta ABE\left(c-g-c\right)\) ( đpcm )
b) Vì \(\Delta ACD=\Delta ABE\)
\(\Rightarrow\widehat{B_1}=\widehat{C_1}\) ( góc t/ứng )
hay \(\widehat{IBD}=\widehat{ICE}\) ( đpcm )
Vậy...
ai giup minh cau 2a khg
chiu nay co kiem tra rui
giup minh vs
a, Xét \(\Delta ABE\) và \(\Delta ACD\) có:
AE = AD
Góc A chung
AB = AC ( \(\Delta ABC\) cân )
Vậy: \(\Delta ABE\) = \(\Delta ACD\) (c.g.c)
\(\Rightarrow BE=CD\)
b, Vì \(\Delta ABE\) = \(\Delta ACD\)
\(\Rightarrow\) góc ABC = góc ACD; góc ADC = góc AEB
Vì góc ADC = góc AEB
\(\Rightarrow\) góc BDC = góc CEB ( kề bù )
Vì AB = AC; AD = AE
\(\Rightarrow\) AB - AD = AC - AE
\(\Rightarrow\)BD = CE
Xét \(\Delta BMD\) và \(\Delta CME\) có:
góc BDC = góc CEB
BD = CE
góc ABC = góc ACD
Vậy: \(\Delta BMD\) = \(\Delta CME\) ( g.c.g )
c, Vì \(\Delta BMD\) = \(\Delta CME\)
\(\Rightarrow\) DM = ME
Xét \(\Delta AMD\) và \(\Delta AME\) có:
AM chung
AD = AE
DM = ME
Vậy: \(\Delta AMD\) = \(\Delta AME\) ( g.c.g )
\(\Rightarrow\) góc MAD = góc MAE
Vậy: AM là phân giác góc BAC
d, Vì \(\Delta ADE\) cân tại A ( AD = AE )
\(\Rightarrow ADE=\left(180-BAC\div2\right)\)
Vì \(\Delta ABC\) cân tại A
\(\Rightarrow ABC=\left(180-BAC\div2\right)\)
mà \(ADE=\left(180-BAC\div2\right)\)
\(\Rightarrow\)góc ABC = góc ADE
mà 2 góc ở vị trí so le trong do AB cắt DE và BC
Vậy DE // BC
cam on ban nha