K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2018

8x-4x2-5

= -4x2+8x-5

= -4x2+8x-4-1

= -(4x2-8x+4)-1

= -(2x-2)2-1

do -(2x-2)2 ≤ 0 ∀x

=> -(2x-2)2-1≤ -1 ∀x

=> -(2x-2)2 <0 ∀x

hay 8x-4x2-5<0 ∀x (đpcm)

8 tháng 6 2018

Ta có:

\(8x-4x^2-5=-\left(4x^2-8x+5\right)=-\left(\left(2x\right)^2-2.2x.2+2^2+1\right)=-\left(2x-2\right)^2-1\)\(-\left(2x-2\right)^2\le0\), Với mọi x nên

5 tháng 7 2017

1, xy(x+y)+yz(y+z)+xz(x+z)+2xyz

= x2y+xy2+y2z+yz2+x2z+xz2+2xyz

=(x2y+x2z+xz2+xyz) + ( xy2+y2z+yz2+xyz)

=x(xy+xz+z2+yz)+y(xy+yz+z2+xz)

=(xy+xz+yz+z2).(x+y)

=(x(y+z)+z(y+z)).(x+y)

=((y+z).(x+z)).(x+y)= (x+y)(x+z)(y+z)

2. 3(x-3)(x-7)+(x-4)2+48

=3(x2+4x-21)+x2-8x+16+48

=4x2-4x+1 = (2x-1)2

Thay x=0,5 vào bt trên, ta có : (2.0,5 -1)2=0

3, x2-6x+10

= x2-2.3.x+9+1

=(x-3)2+1 \(\ge\)1 >0 ( do (x-3)>=0 với mọi x)

=> x26x+10 >0 với mọi x

4x-x2-5

=-(x2-4x+5)

=- (x2-2.2x+4+1)

= - ((x-2)2+1) = -(x-2)2-1\(\le\)-1 < 0 ( do (x-2)2\(\ge\)0 với mọi x => - (x-2)2\(\le\)0 với mọi x)

vậy, 4x-x2-5<0 với mọi x

5 tháng 7 2017

Ta có : x2 - 6x + 10 

= x2 - 6x + 9 + 1 

= (x - 3)2 + 1

Mà (x - 3)2 \(\ge0\forall x\)

Nên : (x - 3)2 + 1 \(\ge1\forall x\)

=> (x - 3)2 + 1 \(>0\)(đpcm)

28 tháng 6 2017

Ta có:\(2x^2+2xy+4x+y^2+8\)

         \(=x^2+4x+4+x^2+2xy+y^2+4\)

          \(=\left(x+2\right)^2+\left(x+y\right)^2+4\)

                  Vì \(\left(x+2\right)^2\ge0;\left(x+y\right)^2\ge0\)

                           \(\Rightarrow\left(x+2\right)^2+\left(x+y\right)^2+4\ge4\)

Vậy 2x^2+2xy+4x+y^2+8>0 voi moi x,y

28 tháng 6 2017

2x^2+2xy+4x+y^2+8

 = x^2+2xy+y^2 +x^2 + 4x+4+4 

=(x+y)^2 + (x+2)^2 +4

Vì (x+y)^2 và (x+2)^2 đều >=0 

Nên (x+y)^2+(x+2)^2+4   >=  4  >0

Vậy.........n.n

18 tháng 10 2020

   4x(x+y)(x+y+z)(x+z) + y^2.z^2

= 4(x^2 + xy + xz)( x^2 + xy + xz + yz) + y^2.z^2

Đặt x^2 + yz + xz = t

=>  4x(x+y)(x+y+z)(x+z) + y^2.z^2 = 4t( t + yz) + y^2.z^2 = 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0(ĐPCM)

Vậy 4t^2 + 4tyz +y^2.z^2 = ( 2t + yz)^2 \(\ge\)0 với moji x,y,z

22 tháng 10 2017

Bài 1:

\(x^3-x^2-x+1=0\)

\(\Leftrightarrow x^2\left(x-1\right)-\left(x-1\right)=0\)

\(\Leftrightarrow\left(x^2-1\right)\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

Vậy x = 1 hoặc x = -1

Bài 2:
\(2x-2x^2-1=-2\left(x^2-x+\dfrac{1}{2}\right)\)

\(=-2\left(x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{4}\right)\)

\(=-2\left(x^2-\dfrac{1}{2}\right)^2-\dfrac{1}{2}< 0\)

\(\Rightarrowđpcm\)

22 tháng 10 2017

đpcm la j the ban

13 tháng 8 2015

Ta có x2+y2-4x+2y + 7

= ( x-4x+2) + ( y2+2y+1)+4

= ( x-2) +( y+1)2 +4

Ta có ( x-2)2 >=0 và ( y+1)>=0 

<=> ( x-2) +( y+1)2 +4>=4

vậy  x2+y2-4x+2y + 7>=0

25 tháng 9 2017

to khong biet

4 tháng 8 2017

1)\(x^2+6x+13=x^2+6x+9+4=\left(x+3\right)^2+4\)

Do \(\left(x+3\right)^2\ge0\)với mọi x

Nên \(\left(x+3\right)^2+4\ge4>0\)với mọi x 

Hay \(x^2+6x+13>0\)với mọi x

4 tháng 8 2017

2/ Ta có: x + 6x + 13 = x2 + 2.3x + 9 +4 = ( x + 3)2 + 4

Ta có: (x+3)>0 (với mọi x)

Nên (x+3)2 + 4 \(\ge\)4 >0.

3/ Ta có: - x2+6x-11 = - (x2-6x+11)  = - (x2-2.3x+9+2) = - (x-3)2-2

Ta có: (x-3)2>0 với mọi x

Nên - (x-3)2<0 với mọi x

Suy ra - (x-3)2-2 \(\le\)- 2 <0

4/ Ta có: x -  y = 5 

Suy ra (x - y)2 = 25

\(\Leftrightarrow\)  x2 - 2xy + y2  = 25

\(\Leftrightarrow\)x2 - 2.24  + y= 25

\(\Leftrightarrow\)  x+ y2 = 73

Ta có: x3 - y3 = (x - y).(x2  + xy + y2 ) = 5.(73 + 24) =485