K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 1:

Biểu thức chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất.

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}=1-\frac{1}{x+1}+1-\frac{1}{y+1}+1-\frac{1}{z+1}\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Giờ chỉ cần cho biến $x$ nhỏ vô cùng đến $0$, khi đó giá trị biểu thức trong ngoặc sẽ tiến đến dương vô cùng, khi đó P sẽ tiến đến nhỏ vô cùng, do đó không có min

Nếu chuyển tìm max thì em tìm như sau:

Áp dụng BĐT Cauchy_Schwarz:

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\geq \frac{(1+1+1)^2}{x+1+y+1+z+1}=\frac{9}{x+y+z+3}=\frac{9}{4}\)

Do đó: \(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\leq 3-\frac{9}{4}=\frac{3}{4}\)

Vậy \(P_{\min}=\frac{3}{4}\Leftrightarrow x=y=z=\frac{1}{3}\)

AH
Akai Haruma
Giáo viên
5 tháng 6 2018

Bài 2:

Áp dụng BĐT Cauchy-Schwarz :

\(\frac{1}{a+3b+2c}=\frac{1}{9}\frac{9}{(a+c)+(b+c)+2b}\leq \frac{1}{9}\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

\(\Rightarrow \frac{ab}{a+3b+2c}\leq \frac{1}{9}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)\)

Hoàn toàn tương tự:

\(\frac{bc}{b+3c+2a}\leq \frac{1}{9}\left(\frac{bc}{b+a}+\frac{bc}{c+a}+\frac{b}{2}\right)\)

\(\frac{ac}{c+3a+2b}\leq \frac{1}{9}\left(\frac{ac}{c+b}+\frac{ac}{a+b}+\frac{c}{2}\right)\)

Cộng theo vế:

\(\Rightarrow \text{VT}\leq \frac{1}{9}\left(\frac{b(a+c)}{a+c}+\frac{a(b+c)}{b+c}+\frac{c(a+b)}{a+b}+\frac{a+b+c}{2}\right)\)

hay \(\text{VT}\leq \frac{a+b+c}{6}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c$

1 tháng 9 2017

 P = x(x/2+1/yz) + y(y/2+1/zx) + z(z/2+1/xy) 

= ½ [x(xyz +2)/(yz) + y(xyz +2)/(xz) + z(xyz +2)/(xy)]

= ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz)

Lại có: xyz + 2 = xyz + 1 +1 ≥ 3 ³√(xyz) 

Suy ra: 

P = ½ (xyz +2)[x/(yz) + y/(xz) + z/(xy)] ≥ ½ (xyz +2).3 /³√(xyz) 

≥ 3/2 .3 ³√(xyz)/ ³√(xyz) = 9/2 

Vậy P min = 9/2 

Dấu = xra khi x = y = z = 1 

1 tháng 9 2017

Bài 1: 
Ta có 
A =x/(x+1) +y/(y+1)+z/(z+1) 
A= 1- 1/(x+1)+1-1/(y+1) +1-1/(z+1) 
A=3- [1/(x+1)+1/(y+1) +1/(z+1) ] 
B = 1/(x+1)+1/(y+1) +1/(z+1) 
Đặt x+1=a; y+1=b;z+1 =c 
=>a+b+c=4 
4B=4(1/a+1/b+1/c) 
B= (a+b+c) (1/a+1/b+1/c) 
4B =3+(a/b+b/a) +(a/c+c/a)+(b/c+c/a) 

Từ (a-b)^2 ≥ 0 =>a^2+b^2 ≥ 2ab chia 2 vế cho ab 
=> a/b+b/a ≥2 dấu "=" khi a=b 
Tương tự có 
a/c+c/a ≥2 ;b/c+c/b ≥2 
=>4B ≥3+2+2+2=9 
=>B ≥ 9/4 
=>A ≤ 3-9/4 = 3/4 
Vậy max A =3/4 khi a=b=c 
=>x=y=z =1/3 

Bài 2:

Giúp tui nha

17 tháng 12 2021

x+y+z=0

nên x+y=-z; y+z=-x; x+z=-y

\(\left(1+\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\left(1+\dfrac{z}{x}\right)\)

\(=\dfrac{x+y}{y}\cdot\dfrac{y+z}{z}\cdot\dfrac{x+z}{x}=-1\)

23 tháng 1 2017

bài 2: (x-3).(y+2) = -5

    Vì x, y \(\in\)Z   => x-3 \(\in\)Ư(-5) = {5;-5;1;-1}

Ta có bảng: 

x-35-5-11
y+21-1-55
x8-224
y-1-3-73



bài 3: a(a+2)<0

TH1 : \(\orbr{\begin{cases}a< 0\\a+2>0\end{cases}}\)=>\(\orbr{\begin{cases}a< 0\\a>-2\end{cases}}\)=> -2<a<0 ( TM)

TH2: \(\orbr{\begin{cases}a>0\\a+2< 0\end{cases}}\Rightarrow\orbr{\begin{cases}a>0\\a< -2\end{cases}}\Rightarrow loại\)
 

           Vậy -2<a<0

23 tháng 1 2017

Bài 5: \(\left(x^2-1\right)\left(x^2-4\right)< 0\)

TH 1 : \(\hept{\begin{cases}x^2-1>0\\x^2-4< 0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2>1\\x^2< 4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x>1\\x< 2\end{cases}}\)\(\Rightarrow\)1 < a < 2

TH 2: \(\hept{\begin{cases}x^2-1< 0\\x^2-4>0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2< 1\\x^2>4\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x< 1\\x>2\end{cases}}\)\(\Rightarrow\)loại

                         Vậy 1<a<2

25 tháng 4 2016

P = (x +1 -1)/(x +1) + (y +1 -1)/(y +1) + (z +1 -1)/ (z+1) 
= 3 - [ 1/(x+1) + 1/(y +1) + 1/(z +1) ] 
Áp dụng BĐT cô si, ta có: 
[(x +1) + (y +1) + (z +1)]. [1/(x+1) + 1/(y +1) + 1/(z +1) ] ≥9 
=> 1/(x+1) + 1/(y +1) + 1/(z +1) ≥ 9/4 ( do x + y + z =1) 
=> P ≤ 3/4 
Dấu " =" xảy ra <=> x = y = z = 1/3 
Vậy maxP = 3/4 
Lưu ý: bạn cần cm BĐT phụ:
Cho x, y, z >0, ta có: 
(x +y +z) (1/x +1/y +1/z) ≥ 9 
Chứng minh nhanh như sau: 
Theo bđt cô si đã biết, ta có: x + y + z ≥ 3∛(xyz) và 1/x +1/y + 1/z ≥ 3∛[1/(xyx)] 
⇒(x + y + z)(1/x + 1/y +1/z) ≥ 3∛(xyz) . 3∛[1/(xyx)] =9 
Dấu “=” của bđt xảy ra ⇔ x = y = z 

25 tháng 4 2016

\(P=\left(1-\frac{1}{x+1}\right)+...\)

  = \(3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Schwarz ta có \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+y+z+3}\)\(=\frac{9}{4}\)

do đó P<= 3-9/4=3/4

dấu = xảy ra <=> x=y=z=1/3

12 tháng 11 2023

Bài 1

a) (x + 3)(x + 2) = 0

x + 3 = 0 hoặc x + 2 = 0

*) x + 3 = 0

x = 0 - 3

x = -3 (nhận)

*) x + 2 = 0

x = 0 - 2

x = -2 (nhận)

Vậy x = -3; x = -2

b) (7 - x)³ = -8

(7 - x)³ = (-2)³

7 - x = -2

x = 7 + 2

x = 9 (nhận)

Vậy x = 9

12 tháng 11 2023

Thanks

 

Bài 1:a) Ta có: \(1-3x⋮x-2\)

\(\Leftrightarrow-3x+1⋮x-2\)

\(\Leftrightarrow-3x+6-5⋮x-2\)

mà \(-3x+6⋮x-2\)

nên \(-5⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(-5\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{3;1;7;-3\right\}\)

Vậy: \(x\in\left\{3;1;7;-3\right\}\)

b) Ta có: \(3x+2⋮2x+1\)

\(\Leftrightarrow2\left(3x+2\right)⋮2x+1\)

\(\Leftrightarrow6x+4⋮2x+1\)

\(\Leftrightarrow6x+3+1⋮2x+1\)

mà \(6x+3⋮2x+1\)

nên \(1⋮2x+1\)

\(\Leftrightarrow2x+1\inƯ\left(1\right)\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow2x\in\left\{0;-2\right\}\)

hay \(x\in\left\{0;-1\right\}\)

Vậy: \(x\in\left\{0;-1\right\}\)

8 tháng 2 2021

Bài 1 :

a, Có : \(1-3x⋮x-2\)

\(\Rightarrow-3x+6-5⋮x-2\)

\(\Rightarrow-3\left(x-2\right)-5⋮x-2\)

- Thấy -3 ( x - 2 ) chia hết cho  x - 2

\(\Rightarrow-5⋮x-2\)

- Để thỏa mãn yc đề bài thì : \(x-2\inƯ_{\left(-5\right)}\)

\(\Leftrightarrow x-2\in\left\{1;-1;5;-5\right\}\)

\(\Leftrightarrow x\in\left\{3;1;7;-3\right\}\)

Vậy ...

b, Có : \(3x+2⋮2x+1\)

\(\Leftrightarrow3x+1,5+0,5⋮2x+1\)

\(\Leftrightarrow1,5\left(2x+1\right)+0,5⋮2x+1\)

- Thấy 1,5 ( 2x +1 ) chia hết cho  2x+1

\(\Rightarrow1⋮2x+1\)

- Để thỏa mãn yc đề bài thì : \(2x+1\inƯ_{\left(1\right)}\)

\(\Leftrightarrow2x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x\in\left\{0;-1\right\}\)

Vậy ...