Cho A=2^2+2^2+2^3+2^4+2^5+...+2^19+2^20.Viết A dưới dạng lũy thừa
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A-4=2^2+2^3+2^4+...+2^{20}$
$2(A-4)=2^3+2^4+2^5+....+2^{21}$
$\Rightarrow 2(A-4)-(A-4)=2^{21}-2^2$
$\Rightarrow A-4=2^{21}-4$
$\Rightarrow A=2^{21}$
\(A=2^2+2^3+2^4+...+2^{20}\)
\(2A=2^3+2^4+2^5+...+2^{21}\)
\(A=2A-A=2^{21}-2^2\)
\(A=2+2^2+...+2^{20}\)
\(2A=2^2+2^3+...+2^{21}\)
\(A=2^{21}-2\)
1.
a) \(3^4\times3^5\times3^6=3^{4+5+6}=3^{15}\)
b) \(5^2\times5^4\times5^5\times25=5^2\times5^4\times5^5\times5^2=5^{2+4+5+2}=5^{13}\)
c) \(10^8\div10^3=10^{8-3}=10^5\)
d) \(a^7\div a^2=a^{7-2}=a^5\)
2.
\(987=900+80+7\\ =9\times100+8\times10+7\\ =9\times10^2+8\times10^1+7\times10^0\)
\(2021=2000+20+1\\ =2\times1000+2\times10+1\times1\\ =2\times10^3+2\times10^1+1\times10^0\)
\(abcde=a\times10000+b\times1000+c\times100+d\times10+e\times1\\ =a\times10^4+b\times10^3+c\times10^2+d\times10^1+e\times10^0\)
Ta có
A = 22 + 22 + 23 + 24 + .. + 220
A = 2 . 22 + 23 + 24 +.. + 220
A = 23 + 23 + 24 + .. + 220
A = 24 + 24 + ... 220
Làm như vậy cho đến khi A = 219 + 219 + 220
A = 220 + 220 = 2 . 220 = 221
Ta có A = 22 + 22 + 23 + 24 + ............ + 220
=> 2A = 2.(22 + 22 + 23 + 24 + ............ + 220)
=> 2A = 23 + 23 + 24 + 25 + ............ + 221
=> 2A - A = 221 + 23 - 22 - 22
=> A = 221 (đpcm)
Ta có A = 22 + 22 + 23 + 24 + ............ + 220
=> 2A = 2.(22 + 22 + 23 + 24 + ............ + 220)
=> 2A = 23 + 23 + 24 + 25 + ............ + 221
=> 2A - A = 221 + 23 - 22 - 22
=> A = 221 (đpcm)
bạn Nguyễn Đình Dũng thật bậy bạ vậy bạn cứ thử làm đi sao lại chử bạn ấy thế
con ngu hay đi hỏi bài dễ