K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

a + b + 2a2 + 2b2\(2ab+2a\sqrt{b}+2b\sqrt{a}\)

⇔ a + b + 2a2 + 2b2 - \(2ab-2a\sqrt{b}-2b\sqrt{a}\) ≥ 0

⇔ a2 - 2ab + b2 + a2 - 2a\(\sqrt{b}+b+b^2-2b\sqrt{a}+a\) ≥ 0

⇔ ( a - b)2 + ( a - \(\sqrt{b}\) )2 + ( b - \(\sqrt{a}\))2 ≥ 0 ( Luôn đúng )

29 tháng 5 2018

Dấu \("="\) xảy ra khi ....................

26 tháng 11 2021

\(M=a^2-a\left|a\right|-\dfrac{b}{2}\cdot2\left|b\right|-b^2\\ M=a^2+a^2-b^2-b^2\\ M=2\left(a^2-b^2\right)\\ D\)

26 tháng 11 2021

D . \(2.\left(a^2-b^2\right)\)

12 tháng 6 2017

B xem lại đề bài thử nhé

12 tháng 6 2017

bài này mình cũng dò lại đề rồi mình chép đúng đấy mà không làm được nên mới nhờ giải

8 tháng 10 2021

\(M=\sqrt{a^2+2ab+b^2+b^2}+\sqrt{b^2+2bc+c^2+c^2}+\sqrt{c^2+2ca+a^2+a^2}\)

\(M=\sqrt{\left(a+b\right)^2+b^2}+\sqrt{\left(b^{ }+c\right)^2+c^2}+\sqrt{\left(c+a\right)^2+a^2}\)

\(M\ge\sqrt{\left(a+b+b+c+c+a\right)^2+\left(a+b+c\right)^2}\ge\sqrt{\left[2\left(a+b+c\right)\right]^2+3^2}\ge\sqrt{6^2+3^2}\ge3\sqrt{5}\)

\(dấu\)\("="xảy\) \(ra\) \(\Leftrightarrow a=b=c=1\)

AH
Akai Haruma
Giáo viên
8 tháng 10 2021

Cách khác:

Áp dụng BĐT Bunhiacopxky:

$5(a^2+2ab+2b^2)=[(a+b)^2+b^2](2^2+1^2)\geq [2(a+b)+b]^2$

$\Rightarrow \sqrt{5(a^2+2ab+b^2)}\geq 2a+3b$

Tương tự với các căn thức còn lại và cộng theo vế:

$M\sqrt{5}\geq 5(a+b+c)$

$\Leftrightarrow M\geq \sqrt{5}(a+b+c)=3\sqrt{5}$

Ta có đpcm

Dấu "=" xảy ra khi $a=b=c=1$

10 tháng 6 2017

mờ quá bạn

AH
Akai Haruma
Giáo viên
1 tháng 2 2020

Lời giải:
Với $a,b,c>0$ dễ thấy $0< \frac{a}{a+2b}< 1$

$\Rightarrow 0< \sqrt{\frac{a}{a+2b}}< 1$

$\Rightarrow \sqrt{\frac{a}{a+2b}}> \frac{a}{a+2b}$

Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế suy ra:

$\text{VT}> \frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}$

Áp dụng BĐT Cauchy-Schwarz:

$\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\geq \frac{(a+b+c)^2}{a^2+2ba+b^2+2cb+c^2+2ac}=1$

Do đó $\text{VT}>1$ (đpcm)

2 tháng 2 2020

Sử dụng BĐT AM-GM:

\(VT=\sum\limits_{cyc} \sqrt{\frac{a}{a+2b}} =\sum\limits_{cyc} \frac{a}{\sqrt{a(a+2b}}\geq \sum\limits_{cyc} \frac{2a}{2(a+b)}\)

\(=\sum\limits_{cyc} \frac{a^2}{a^2 +ab} \ge \frac{(a+b+c)^2}{a^2+b^2+c^2+ab+bc+ca} >\frac{(a+b+c)^2}{a^2+b^2+c^2+2ab+2bc+2ca} = 1\) (đpcm)

P/s: Em không chắc lắm.